Nuprl Lemma : derivative-is-zero
∀I:Interval. (iproper(I) ⇒ (∀f:I ⟶ℝ. (d(f[x])/dx = λx.r0 on I ⇐⇒ ∃c:ℝ. ∀x:{x:ℝ| x ∈ I} . (f[x] = c))))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I, 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
iproper: iproper(I), 
interval: Interval, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nat_plus: ℕ+, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
rsub: x - y, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
i-nonvoid: i-nonvoid(I), 
subinterval: I ⊆ J , 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x)
Lemmas referenced : 
derivative_wf, 
i-member_wf, 
real_wf, 
int-to-real_wf, 
exists_wf, 
all_wf, 
req_wf, 
rfun_wf, 
iproper_wf, 
interval_wf, 
req-iff-rabs-rleq, 
nat_plus_wf, 
rless_wf, 
set_wf, 
rcc-subinterval, 
sq_stable__i-member, 
rleq_wf, 
mean-value-theorem, 
rfun_subtype, 
rccint_wf, 
continuous-const, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless-int-fractions2, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
derivative_functionality_wrt_subinterval, 
rabs_wf, 
rsub_wf, 
rmul_wf, 
radd_wf, 
rminus_wf, 
uiff_transitivity, 
rleq_functionality, 
rabs_functionality, 
radd_functionality, 
rminus_functionality, 
req_transitivity, 
rmul-distrib, 
rmul_over_rminus, 
req_weakening, 
rmul-zero-both, 
rminus-radd, 
rmul_functionality, 
rminus-zero, 
req_inversion, 
radd-assoc, 
radd-ac, 
radd_comm, 
rmul-int, 
rminus-as-rmul, 
rmul-identity1, 
rmul-distrib2, 
radd-int, 
radd-zero-both, 
rabs-difference-symmetry, 
iproper-nonvoid, 
req-iff-not-rneq, 
rneq_wf, 
rless_transitivity1, 
rleq_weakening, 
rless_irreflexivity, 
differentiable-continuous, 
i-member-proper-iff, 
i-approx-compact, 
i-approx-is-subinterval, 
proper-continuous-implies, 
ifun-iff-continuous, 
i-approx_wf, 
subtype_rel_sets, 
icompact-is-rccint, 
member_rccint_lemma, 
rleq_transitivity, 
left-endpoint_wf, 
i-approx-finite, 
right-endpoint_wf, 
top_wf, 
subtype_rel_dep_function, 
subtype_rel_self, 
derivative-const, 
derivative_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
setEquality, 
natural_numberEquality, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination, 
inrFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
multiplyEquality, 
minusEquality, 
addEquality, 
productEquality
Latex:
\mforall{}I:Interval
    (iproper(I)  {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  (d(f[x])/dx  =  \mlambda{}x.r0  on  I  \mLeftarrow{}{}\mRightarrow{}  \mexists{}c:\mBbbR{}.  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  (f[x]  =  c))))
Date html generated:
2016_10_26-AM-11_33_27
Last ObjectModification:
2016_08_25-AM-00_31_15
Theory : reals
Home
Index