Nuprl Lemma : rsqrt2-repels-rationals

n:ℕ+. ∀m:ℤ.  ((r1/r(3 n)) ≤ |rsqrt(r(2)) (r(m)/r(n))|)


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) nat_plus: + all: x:A. B[x] multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat_plus: + iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: nat: uiff: uiff(P;Q) uimplies: supposing a squash: T decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top true: True rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 guard: {T} nequal: a ≠ b ∈  so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b int_seg: {i..j-} lelt: i ≤ j < k sq_type: SQType(T) rneq: x ≠ y rdiv: (x/y) rge: x ≥ y rless: x < y sq_exists: x:A [B[x]] real: int-to-real: r(n) sq_stable: SqStable(P) rsqrt: rsqrt(x) rroot: rroot(i;x) ifthenelse: if then else fi  isEven: isEven(n) eq_int: (i =z j) modulus: mod n remainder: rem m btrue: tt rroot-abs: rroot-abs(i;x) fastexp: i^n efficient-exp-ext genrec: genrec subtract: m rabs: |x| absval: |i| iroot: iroot(n;x) integer-nth-root-ext exp: i^n primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f) genrec-ap: genrec-ap divide: n ÷ m rmul: b rinv: rinv(x) mu-ge: mu-ge(f;n) lt_int: i <j accelerate: accelerate(k;f) imax: imax(a;b) reg-seq-inv: reg-seq-inv(x) le_int: i ≤j bnot: ¬bb bfalse: ff reg-seq-mul: reg-seq-mul(x;y) radd: b reg-seq-list-add: reg-seq-list-add(L) cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L) cons: [a b] nil: [] it:
Lemmas referenced :  istype-int nat_plus_wf rmul_wf rabs_wf rsub_wf rsqrt_wf radd_wf int-to-real_wf rleq-int istype-false rleq_wf subtract_wf absval_wf rminus_wf itermSubtract_wf itermMultiply_wf itermVar_wf itermAdd_wf itermMinus_wf itermConstant_wf req-int squash_wf true_wf nat_plus_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_minus_lemma int_term_value_mul_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_wf istype-nat req_functionality req_inversion rabs-rmul req_weakening req_transitivity rabs_functionality radd_functionality rminus_functionality rmul-int rminus-int rabs-int req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_const_lemma rmul_functionality rsqrt_squared radd-int decidable__le req_wf real_wf subtype_rel_self iff_weakening_equal absval-positive int_subtype_base set_subtype_base less_than_wf intformand_wf intformle_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_formula_prop_less_lemma irrational-sqrt-number-lemma istype-le int_seg_wf lelt_wf subtype_base_sq int_seg_properties int_seg_subtype_special int_seg_cases rleq_functionality rmul_preserves_rleq rdiv_wf rless-int mul_bounds_1b decidable__lt istype-less_than mul_nat_plus rless_wf rinv_wf2 rneq_functionality rneq-int int_entire_a mul_nzero nat_plus_inc_int_nzero rinv_functionality2 rinv-of-rmul rmul-rinv3 rmul-rinv rminus-rdiv rabs-of-nonneg rleq_functionality_wrt_implies r-triangle-inequality rleq_weakening_equal rmul-nonneg-case1 rsqrt_nonneg radd_functionality_wrt_rleq rmul_preserves_rleq2 sq_stable__less_than radd-preserves-rleq rleq_weakening_rless zero-rleq-rabs rinv1 rabs-difference-symmetry rmul-identity1 rinv-as-rdiv mul_preserves_le nat_plus_subtype_nat rleq-int-fractions rsub_functionality_wrt_rleq rabs-as-rmax rmax_ub efficient-exp-ext integer-nth-root-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid hypothesis universeIsType sqequalHypSubstitution isectElimination thin because_Cache applyEquality sqequalRule setElimination rename dependent_functionElimination natural_numberEquality productElimination independent_functionElimination independent_pairFormation dependent_set_memberEquality_alt hypothesisEquality minusEquality multiplyEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry addEquality independent_isectElimination imageElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination imageMemberEquality baseClosed promote_hyp instantiate universeEquality equalityIstype baseApply closedConclusion intEquality sqequalBase productIsType cumulativity hypothesis_subsumption inrFormation_alt dependent_set_memberFormation_alt computeAll inlFormation_alt

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\mBbbZ{}.    ((r1/r(3  *  n  *  n))  \mleq{}  |rsqrt(r(2))  -  (r(m)/r(n))|)



Date html generated: 2019_10_30-AM-08_57_04
Last ObjectModification: 2019_04_03-AM-00_24_17

Theory : reals


Home Index