Nuprl Lemma : rsqrt2-repels-rationals
∀n:ℕ+. ∀m:ℤ.  ((r1/r(3 * n * n)) ≤ |rsqrt(r(2)) - (r(m)/r(n))|)
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
guard: {T}
, 
nequal: a ≠ b ∈ T 
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
less_than: a < b
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
sq_type: SQType(T)
, 
rneq: x ≠ y
, 
rdiv: (x/y)
, 
rge: x ≥ y
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
real: ℝ
, 
int-to-real: r(n)
, 
sq_stable: SqStable(P)
, 
rsqrt: rsqrt(x)
, 
rroot: rroot(i;x)
, 
ifthenelse: if b then t else f fi 
, 
isEven: isEven(n)
, 
eq_int: (i =z j)
, 
modulus: a mod n
, 
remainder: n rem m
, 
btrue: tt
, 
rroot-abs: rroot-abs(i;x)
, 
fastexp: i^n
, 
efficient-exp-ext, 
genrec: genrec, 
subtract: n - m
, 
rabs: |x|
, 
absval: |i|
, 
iroot: iroot(n;x)
, 
integer-nth-root-ext, 
exp: i^n
, 
primrec: primrec(n;b;c)
, 
primtailrec: primtailrec(n;i;b;f)
, 
genrec-ap: genrec-ap, 
divide: n ÷ m
, 
rmul: a * b
, 
rinv: rinv(x)
, 
mu-ge: mu-ge(f;n)
, 
lt_int: i <z j
, 
accelerate: accelerate(k;f)
, 
imax: imax(a;b)
, 
reg-seq-inv: reg-seq-inv(x)
, 
le_int: i ≤z j
, 
bnot: ¬bb
, 
bfalse: ff
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
radd: a + b
, 
reg-seq-list-add: reg-seq-list-add(L)
, 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L)
, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
Lemmas referenced : 
istype-int, 
nat_plus_wf, 
rmul_wf, 
rabs_wf, 
rsub_wf, 
rsqrt_wf, 
radd_wf, 
int-to-real_wf, 
rleq-int, 
istype-false, 
rleq_wf, 
subtract_wf, 
absval_wf, 
rminus_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMinus_wf, 
itermConstant_wf, 
req-int, 
squash_wf, 
true_wf, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_minus_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf, 
istype-nat, 
req_functionality, 
req_inversion, 
rabs-rmul, 
req_weakening, 
req_transitivity, 
rabs_functionality, 
radd_functionality, 
rminus_functionality, 
rmul-int, 
rminus-int, 
rabs-int, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_const_lemma, 
rmul_functionality, 
rsqrt_squared, 
radd-int, 
decidable__le, 
req_wf, 
real_wf, 
subtype_rel_self, 
iff_weakening_equal, 
absval-positive, 
int_subtype_base, 
set_subtype_base, 
less_than_wf, 
intformand_wf, 
intformle_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
irrational-sqrt-number-lemma, 
istype-le, 
int_seg_wf, 
lelt_wf, 
subtype_base_sq, 
int_seg_properties, 
int_seg_subtype_special, 
int_seg_cases, 
rleq_functionality, 
rmul_preserves_rleq, 
rdiv_wf, 
rless-int, 
mul_bounds_1b, 
decidable__lt, 
istype-less_than, 
mul_nat_plus, 
rless_wf, 
rinv_wf2, 
rneq_functionality, 
rneq-int, 
int_entire_a, 
mul_nzero, 
nat_plus_inc_int_nzero, 
rinv_functionality2, 
rinv-of-rmul, 
rmul-rinv3, 
rmul-rinv, 
rminus-rdiv, 
rabs-of-nonneg, 
rleq_functionality_wrt_implies, 
r-triangle-inequality, 
rleq_weakening_equal, 
rmul-nonneg-case1, 
rsqrt_nonneg, 
radd_functionality_wrt_rleq, 
rmul_preserves_rleq2, 
sq_stable__less_than, 
radd-preserves-rleq, 
rleq_weakening_rless, 
zero-rleq-rabs, 
rinv1, 
rabs-difference-symmetry, 
rmul-identity1, 
rinv-as-rdiv, 
mul_preserves_le, 
nat_plus_subtype_nat, 
rleq-int-fractions, 
rsub_functionality_wrt_rleq, 
rabs-as-rmax, 
rmax_ub, 
efficient-exp-ext, 
integer-nth-root-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
applyEquality, 
sqequalRule, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
minusEquality, 
multiplyEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
independent_isectElimination, 
imageElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
instantiate, 
universeEquality, 
equalityIstype, 
baseApply, 
closedConclusion, 
intEquality, 
sqequalBase, 
productIsType, 
cumulativity, 
hypothesis_subsumption, 
inrFormation_alt, 
dependent_set_memberFormation_alt, 
computeAll, 
inlFormation_alt
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\mBbbZ{}.    ((r1/r(3  *  n  *  n))  \mleq{}  |rsqrt(r(2))  -  (r(m)/r(n))|)
Date html generated:
2019_10_30-AM-08_57_04
Last ObjectModification:
2019_04_03-AM-00_24_17
Theory : reals
Home
Index