Nuprl Lemma : derivative-implies-decreasing
∀I:Interval
  (iproper(I)
  
⇒ (∀f,f':I ⟶ℝ.
        (d(f[x])/dx = λx.f'[x] on I
        
⇒ f'[x] continuous for x ∈ I
        
⇒ (∀x:{x:ℝ| x ∈ I} . (f'[x] ≤ r0))
        
⇒ f[x] decreasing for x ∈ I)))
Proof
Definitions occuring in Statement : 
decreasing-on-interval: f[x] decreasing for x ∈ I
, 
derivative: d(f[x])/dx = λz.g[z] on I
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
decreasing-on-interval: f[x] decreasing for x ∈ I
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
label: ...$L... t
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
continuous: f[x] continuous for x ∈ I
, 
i-approx: i-approx(I;n)
, 
rccint: [l, u]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_exists: ∃x:{A| B[x]}
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
rless: x < y
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
i-member: r ∈ I
, 
subinterval: I ⊆ J 
, 
rsub: x - y
, 
real: ℝ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
Lemmas referenced : 
rcc-subinterval, 
sq_stable__i-member, 
rleq_wf, 
continuous_functionality_wrt_subinterval, 
rccint_wf, 
set_wf, 
real_wf, 
i-member_wf, 
all_wf, 
int-to-real_wf, 
continuous_wf, 
derivative_wf, 
rfun_wf, 
iproper_wf, 
interval_wf, 
differentiable-continuous, 
req_wf, 
continuous-implies-functional, 
proper-continuous-is-continuous, 
rleq-iff-all-rless, 
small-reciprocal-real, 
rless_wf, 
less_than_wf, 
rccint-icompact, 
icompact_wf, 
sq_stable__and, 
i-approx_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
sq_stable__rless, 
sq_stable__all, 
sq_stable__rleq, 
less_than'_wf, 
nat_plus_wf, 
squash_wf, 
member_rccint_lemma, 
rleq_weakening_equal, 
rless-cases, 
radd_wf, 
trivial-rless-radd, 
mean-value-theorem, 
rfun_subtype, 
derivative_functionality_wrt_subinterval, 
not-rless, 
radd-preserves-rless, 
rminus_wf, 
rless_functionality, 
radd-zero-both, 
req_weakening, 
radd-rminus-assoc, 
radd_comm, 
radd_functionality, 
rmul_preserves_rless, 
equal_wf, 
rmul_wf, 
rmul-one-both, 
rmul-zero-both, 
rmul_functionality, 
radd-int, 
req_transitivity, 
rminus-as-rmul, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
rmul-rdiv-cancel2, 
rmul-int, 
rmul_comm, 
rmul_preserves_rleq2, 
rleq_weakening_rless, 
uiff_transitivity, 
rleq_functionality, 
rabs-of-nonneg, 
radd-preserves-rleq, 
rless_transitivity2, 
rminus_functionality, 
rleq_functionality_wrt_implies, 
radd_functionality_wrt_rleq, 
rless_transitivity1, 
rless_irreflexivity, 
radd-assoc, 
rabs-difference-bound-rleq, 
radd-ac, 
trivial-rleq-radd, 
radd-rminus-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
isectElimination, 
because_Cache, 
lambdaEquality, 
setEquality, 
applyEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_isectElimination, 
isect_memberEquality, 
functionEquality, 
inrFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
addLevel, 
levelHypothesis, 
productEquality, 
multiplyEquality, 
addEquality, 
isect_memberFormation
Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.
                (d(f[x])/dx  =  \mlambda{}x.f'[x]  on  I
                {}\mRightarrow{}  f'[x]  continuous  for  x  \mmember{}  I
                {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  (f'[x]  \mleq{}  r0))
                {}\mRightarrow{}  f[x]  decreasing  for  x  \mmember{}  I)))
Date html generated:
2017_10_03-PM-00_28_14
Last ObjectModification:
2017_07_28-AM-08_42_26
Theory : reals
Home
Index