Nuprl Lemma : HofstadterL_wf
∀n:ℕ
  (HofstadterL(n) ∈ {L:(ℤ × ℤ) List| 
                     (||L|| = (n + 1) ∈ ℤ) ∧ (∀i:ℕn + 1. (L[i] = <HofstadterM(n - i), HofstadterF(n - i)> ∈ (ℤ × ℤ)))} )
Proof
Definitions occuring in Statement : 
HofstadterL: HofstadterL(n)
, 
HofstadterM: HofstadterM(n)
, 
HofstadterF: HofstadterF(n)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
bool: 𝔹
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
HofstadterL: HofstadterL(n)
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
HofstadterF: HofstadterF(n)
, 
HofstadterM: HofstadterM(n)
, 
cons: [a / b]
, 
select: L[n]
, 
sq_type: SQType(T)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
hd: hd(l)
, 
bfalse: ff
, 
bnot: ¬bb
, 
lt_int: i <z j
, 
le_int: i ≤z j
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
has-value: (a)↓
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
unit: Unit
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
assert: ↑b
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
subtract-1-ge-0, 
istype-nat, 
lt_int_wf, 
HofstadterF_wf, 
bool_wf, 
le_int_wf, 
subtract_wf, 
HofstadterM_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__lt, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__le, 
int_seg_properties, 
select_wf, 
equal_wf, 
all_wf, 
equal-wf-base, 
int_seg_wf, 
length-singleton, 
nil_wf, 
cons_wf, 
int_seg_cases, 
false_wf, 
int_seg_subtype, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
ifthenelse_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
bool_subtype_base, 
squash_wf, 
true_wf, 
istype-universe, 
eq_int_eq_false, 
bfalse_wf, 
subtype_rel_self, 
iff_weakening_equal, 
value-type-has-value, 
int-value-type, 
list_wf, 
set-value-type, 
list-value-type, 
istype-false, 
subtract-add-cancel, 
istype-le, 
list-cases, 
stuck-spread, 
istype-base, 
product_subtype_list, 
reduce_hd_cons_lemma, 
product_subtype_base, 
add-commutes, 
minus-zero, 
add-associates, 
add-zero, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-top, 
assert_of_le_int, 
lelt_wf, 
le_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
pi2_wf, 
trivial-int-eq1, 
bnot_wf, 
not_wf, 
istype-assert, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
pi1_wf_top, 
base_wf, 
subtype_rel_product, 
top_wf, 
list_subtype_base, 
set_subtype_base, 
itermAdd_wf, 
int_term_value_add_lemma, 
select_cons_tl, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
addEquality, 
applyEquality, 
dependent_pairFormation, 
unionElimination, 
productElimination, 
lambdaEquality, 
lambdaFormation, 
voidEquality, 
isect_memberEquality, 
independent_pairEquality, 
intEquality, 
productEquality, 
dependent_set_memberEquality, 
sqleReflexivity, 
callbyvalueReduce, 
hypothesis_subsumption, 
cumulativity, 
instantiate, 
universeEquality, 
promote_hyp, 
imageElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
imageMemberEquality, 
setEquality, 
equalityIsType1, 
dependent_set_memberEquality_alt, 
productIsType, 
minusEquality, 
equalityElimination, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
isectIsTypeImplies, 
sqequalIntensionalEquality, 
functionIsType, 
multiplyEquality
Latex:
\mforall{}n:\mBbbN{}
    (HofstadterL(n)  \mmember{}  \{L:(\mBbbZ{}  \mtimes{}  \mBbbZ{})  List| 
                                          (||L||  =  (n  +  1))
                                          \mwedge{}  (\mforall{}i:\mBbbN{}n  +  1.  (L[i]  =  <HofstadterM(n  -  i),  HofstadterF(n  -  i)>))\}  )
Date html generated:
2019_10_15-AM-11_37_39
Last ObjectModification:
2018_10_18-PM-11_34_51
Theory : general
Home
Index