Nuprl Lemma : HofstadterL_wf

n:ℕ
  (HofstadterL(n) ∈ {L:(ℤ × ℤList| 
                     (||L|| (n 1) ∈ ℤ) ∧ (∀i:ℕ1. (L[i] = <HofstadterM(n i), HofstadterF(n i)> ∈ (ℤ × ℤ)))} )


Proof




Definitions occuring in Statement :  HofstadterL: HofstadterL(n) HofstadterM: HofstadterM(n) HofstadterF: HofstadterF(n) select: L[n] length: ||as|| list: List int_seg: {i..j-} nat: all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  pair: <a, b> product: x:A × B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: so_apply: x[s] bool: 𝔹 subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k guard: {T} int_seg: {i..j-} so_lambda: λ2x.t[x] cand: c∧ B btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) HofstadterL: HofstadterL(n) less_than': less_than'(a;b) le: A ≤ B HofstadterF: HofstadterF(n) HofstadterM: HofstadterM(n) cons: [a b] select: L[n] sq_type: SQType(T) pi2: snd(t) pi1: fst(t) hd: hd(l) bfalse: ff bnot: ¬bb lt_int: i <j le_int: i ≤j squash: T nequal: a ≠ b ∈  true: True iff: ⇐⇒ Q rev_implies:  Q has-value: (a)↓ nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] unit: Unit uiff: uiff(P;Q) less_than: a < b assert: b
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than subtract-1-ge-0 istype-nat lt_int_wf HofstadterF_wf bool_wf le_int_wf subtract_wf HofstadterM_wf int_formula_prop_eq_lemma intformeq_wf decidable__lt int_formula_prop_not_lemma intformnot_wf decidable__le int_seg_properties select_wf equal_wf all_wf equal-wf-base int_seg_wf length-singleton nil_wf cons_wf int_seg_cases false_wf int_seg_subtype int_subtype_base subtype_base_sq decidable__equal_int ifthenelse_wf length_of_nil_lemma length_of_cons_lemma bool_subtype_base squash_wf true_wf istype-universe eq_int_eq_false bfalse_wf subtype_rel_self iff_weakening_equal value-type-has-value int-value-type list_wf set-value-type list-value-type istype-false subtract-add-cancel istype-le list-cases stuck-spread istype-base product_subtype_list reduce_hd_cons_lemma product_subtype_base add-commutes minus-zero add-associates add-zero eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-top assert_of_le_int lelt_wf le_wf itermSubtract_wf int_term_value_subtract_lemma pi2_wf trivial-int-eq1 bnot_wf not_wf istype-assert bool_cases iff_transitivity assert_of_bnot pi1_wf_top base_wf subtype_rel_product top_wf list_subtype_base set_subtype_base itermAdd_wf int_term_value_add_lemma select_cons_tl minus-add minus-minus minus-one-mul add-swap zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType because_Cache addEquality applyEquality dependent_pairFormation unionElimination productElimination lambdaEquality lambdaFormation voidEquality isect_memberEquality independent_pairEquality intEquality productEquality dependent_set_memberEquality sqleReflexivity callbyvalueReduce hypothesis_subsumption cumulativity instantiate universeEquality promote_hyp imageElimination equalityIsType4 baseApply closedConclusion baseClosed imageMemberEquality setEquality equalityIsType1 dependent_set_memberEquality_alt productIsType minusEquality equalityElimination lessCases isect_memberFormation_alt axiomSqEquality isectIsTypeImplies sqequalIntensionalEquality functionIsType multiplyEquality

Latex:
\mforall{}n:\mBbbN{}
    (HofstadterL(n)  \mmember{}  \{L:(\mBbbZ{}  \mtimes{}  \mBbbZ{})  List| 
                                          (||L||  =  (n  +  1))
                                          \mwedge{}  (\mforall{}i:\mBbbN{}n  +  1.  (L[i]  =  <HofstadterM(n  -  i),  HofstadterF(n  -  i)>))\}  )



Date html generated: 2019_10_15-AM-11_37_39
Last ObjectModification: 2018_10_18-PM-11_34_51

Theory : general


Home Index