Nuprl Lemma : sequence-class-program_wf
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[Z:EClass(A)]. ∀[xpr:LocalClass(X)]. ∀[ypr:LocalClass(Y)].
∀[zpr:LocalClass(Z)].
  sequence-class-program(xpr;ypr;zpr) ∈ LocalClass(sequence-class(X;Y;Z)) supposing valueall-type(A)
Proof
Definitions occuring in Statement : 
sequence-class-program: sequence-class-program(xpr;ypr;zpr)
, 
sequence-class: sequence-class(X;Y;Z)
, 
local-class: LocalClass(X)
, 
eclass: EClass(A[eo; e])
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
hdf-sequence_wf, 
Id_wf, 
bool_wf, 
band_wf, 
squash_wf, 
true_wf, 
bnot_bnot_elim, 
eq_int_wf, 
bag-size_wf, 
class-ap_wf, 
nat_wf, 
bnot_wf, 
bag-null_wf, 
eqtt_to_assert, 
assert-bag-null, 
iff_weakening_equal, 
null-bag-size, 
assert_of_eq_int, 
bag_wf, 
es-first-event_wf, 
es-le_wf, 
eo-forward_wf, 
member-eo-forward-E, 
equal_wf, 
es-loc_wf, 
hdf-ap_wf, 
iterate-hdataflow_wf, 
map_wf, 
es-info_wf, 
es-before_wf, 
hdataflow_wf, 
es-E_wf, 
event-ordering+_subtype, 
all_wf, 
sequence-class_wf, 
valueall-type_wf, 
local-class_wf, 
eclass_wf, 
event-ordering+_wf, 
set_wf, 
event_ordering_wf, 
or_wf, 
sq_exists_wf, 
assert_wf, 
es-locl_wf, 
not_wf, 
eo-forward-loc, 
subtype_base_sq, 
atom2_subtype_base, 
es-le-loc, 
assert_functionality_wrt_uiff, 
pi2_wf, 
list_wf, 
and_wf, 
eo-forward-split-before, 
length_wf_nat, 
append_wf, 
subtype_rel_list, 
eo-forward-E-subtype, 
eo-forward-info, 
hdf-halted_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
eqff_to_assert, 
assert-bnot, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_bnot, 
l_member_wf, 
map_append_sq, 
iterate-hdf-append, 
top_wf, 
map_functionality, 
mk-hdf_wf, 
iseg_member, 
member_append, 
cons_member, 
member-es-before, 
iseg_wf, 
iseg-es-before-is-before, 
cons_wf, 
nil_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
colength_wf_list, 
list-cases, 
map_nil_lemma, 
iter_hdf_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
set_subtype_base, 
int_subtype_base, 
map_cons_lemma, 
iter_hdf_cons_lemma, 
bfalse_wf, 
hdf-ap-run, 
hdataflow-ext, 
unit_wf2, 
hdf-ap-inl, 
hdf-run_wf, 
bag_null_empty_lemma, 
hdf_ap_halt_lemma, 
iterate-hdf-halt, 
btrue_wf, 
hdf-halt_wf, 
list_ind_cons_lemma, 
cons_iseg, 
list_ind_nil_lemma, 
nil_iseg, 
assert_of_ff, 
band_ff_simp, 
es-closed-open-interval-eq-before, 
es-closed-open-interval-decomp, 
es-open-interval_wf, 
list_induction, 
hdf_halted_inl_red_lemma, 
hdf_halted_halt_red_lemma, 
empty-bag_wf, 
es-closed-open-interval_wf, 
es-closed-open-interval-nil, 
equal-nil-sq-nil, 
member-es-le-before, 
iseg-es-le-before-is-before, 
iseg_weakening
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[Z:EClass(A)].  \mforall{}[xpr:LocalClass(X)].
\mforall{}[ypr:LocalClass(Y)].  \mforall{}[zpr:LocalClass(Z)].
    sequence-class-program(xpr;ypr;zpr)  \mmember{}  LocalClass(sequence-class(X;Y;Z))  supposing  valueall-type(A)
Date html generated:
2015_07_22-PM-00_05_07
Last ObjectModification:
2015_02_04-PM-05_53_48
Home
Index