Nuprl Lemma : poset-functor-extends-box-faces
∀G:Groupoid. ∀I:Cname List. ∀J:nameset(I) List. ∀x:nameset(I). ∀i:ℕ2. ∀bx:open_box(cubical-nerve(cat(G));I;J;x;i).
  (((¬↑null(J)) ∧ (∃j1∈J. (∃j2∈J. ¬(j1 = j2 ∈ Cname))))
  
⇒ (∀fc∈bx.poset-functor-extends(cat(G);I-[dimension(fc)];λx.nerve_box_label(bx;((dimension(fc):=direction(fc)) o x));
                                   λz,f. nerve_box_edge(bx;((dimension(fc):=direction(fc)) o f);z);cube(fc))))
Proof
Definitions occuring in Statement : 
nerve_box_edge: nerve_box_edge(box;c;y)
, 
nerve_box_label: nerve_box_label(box;L)
, 
cubical-nerve: cubical-nerve(X)
, 
poset-functor-extends: poset-functor-extends(C;I;L;E;F)
, 
open_box: open_box(X;I;J;x;i)
, 
face-cube: cube(f)
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
name-comp: (f o g)
, 
face-map: (x:=i)
, 
nameset: nameset(L)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
groupoid-cat: cat(G)
, 
groupoid: Groupoid
, 
list-diff: as-bs
, 
l_exists: (∃x∈L. P[x])
, 
l_all: (∀x∈L.P[x])
, 
null: null(as)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
l_all: (∀x∈L.P[x])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
open_box: open_box(X;I;J;x;i)
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
nameset: nameset(L)
, 
lelt: i ≤ j < k
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
subtype_rel: A ⊆r B
, 
poset-functor-extends: poset-functor-extends(C;I;L;E;F)
, 
name-morph: name-morph(I;J)
, 
respects-equality: respects-equality(S;T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
face-map: (x:=i)
, 
name-comp: (f o g)
, 
compose: f o g
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
uext: uext(g)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
isname: isname(z)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
bfalse: ff
, 
I-face: I-face(X;I)
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
face-cube: cube(f)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
poset-cat: poset-cat(J)
, 
cat-ob: cat-ob(C)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
cand: A c∧ B
, 
name-morph-flip: flip(f;y)
, 
l_member: (x ∈ l)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat: ℕ
, 
ge: i ≥ j 
Lemmas referenced : 
name-comp_wf, 
list-diff_wf, 
coordinate_name_wf, 
cname_deq_wf, 
cons_wf, 
face-dimension_wf, 
cubical-nerve_wf, 
groupoid-cat_wf, 
select_wf, 
I-face_wf, 
int_seg_properties, 
length_wf, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
nil_wf, 
face-map_wf2, 
face-direction_wf, 
name-morph_wf, 
extd-nameset-respects-equality, 
int_seg_wf, 
nameset_wf, 
istype-assert, 
null_wf3, 
subtype_rel_list, 
top_wf, 
l_exists_wf, 
l_member_wf, 
not_wf, 
equal_wf, 
open_box_wf, 
list_wf, 
groupoid_wf, 
nerve_box_label_same, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
select_member, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
squash_wf, 
true_wf, 
istype-universe, 
eq_int_eq_true, 
btrue_wf, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__equal_int, 
bfalse_wf, 
int_seg_subtype_special, 
int_seg_cases, 
cat-ob_wf, 
cubical-nerve-I-cube, 
functor-ob_wf, 
poset-cat_wf, 
name-morph-ext, 
name-morph_subtype, 
nameset_subtype, 
list-diff-subset, 
member-list-diff, 
member_singleton, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
istype-le, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int, 
uext-ap-name, 
le_wf, 
respects-equality-set-trivial2, 
extd-nameset-nil, 
nerve_box_edge_same, 
eq-cname_wf, 
assert-eq-cname, 
iff_weakening_uiff, 
assert_wf, 
assert_elim, 
bnot_wf, 
btrue_neq_bfalse, 
not_assert_elim, 
cat-arrow_wf, 
nerve_box_label_wf, 
name-morph-flip_wf, 
nsub2_subtype_extd-nameset, 
istype-less_than, 
isname-name, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
or_wf, 
equal-wf-T-base, 
small-category_wf, 
functor-arrow_wf, 
extd-nameset_wf, 
extd-nameset_subtype_base, 
member-poset-cat-arrow, 
subtype_rel_set, 
poset-cat-arrow-flip, 
subtype_rel-equal, 
int_seg_subtype_nat, 
istype-false, 
cat-functor_wf, 
nat_properties, 
respects-equality-product, 
I-cube_wf, 
respects-equality-trivial, 
respects-equality_weakening, 
istype-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
inhabitedIsType, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
setIsType, 
equalityIstype, 
sqequalBase, 
equalitySymmetry, 
productIsType, 
functionIsType, 
functionExtensionality, 
equalityTransitivity, 
inrFormation_alt, 
intEquality, 
instantiate, 
cumulativity, 
universeEquality, 
hypothesis_subsumption, 
hyp_replacement, 
promote_hyp, 
equalityElimination, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
inlFormation_alt, 
baseApply, 
closedConclusion, 
dependent_pairEquality_alt, 
independent_pairEquality, 
productEquality
Latex:
\mforall{}G:Groupoid.  \mforall{}I:Cname  List.  \mforall{}J:nameset(I)  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.
\mforall{}bx:open\_box(cubical-nerve(cat(G));I;J;x;i).
    (((\mneg{}\muparrow{}null(J))  \mwedge{}  (\mexists{}j1\mmember{}J.  (\mexists{}j2\mmember{}J.  \mneg{}(j1  =  j2))))
    {}\mRightarrow{}  (\mforall{}fc\mmember{}bx.poset-functor-extends(cat(G);I-[dimension(fc)];
                                                                      \mlambda{}x.nerve\_box\_label(bx;((dimension(fc):=direction(fc))  o  x));
                                                                      \mlambda{}z,f.  nerve\_box\_edge(bx;((dimension(fc):=direction(fc))  o  f);z);
                                                                      cube(fc))))
Date html generated:
2019_11_05-PM-00_36_11
Last ObjectModification:
2018_12_15-PM-08_45_14
Theory : cubical!sets
Home
Index