Nuprl Lemma : poset-functor-extends-box-faces

G:Groupoid. ∀I:Cname List. ∀J:nameset(I) List. ∀x:nameset(I). ∀i:ℕ2. ∀bx:open_box(cubical-nerve(cat(G));I;J;x;i).
  (((¬↑null(J)) ∧ (∃j1∈J. (∃j2∈J. ¬(j1 j2 ∈ Cname))))
   (∀fc∈bx.poset-functor-extends(cat(G);I-[dimension(fc)];λx.nerve_box_label(bx;((dimension(fc):=direction(fc)) x));
                                   λz,f. nerve_box_edge(bx;((dimension(fc):=direction(fc)) f);z);cube(fc))))


Proof




Definitions occuring in Statement :  nerve_box_edge: nerve_box_edge(box;c;y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) poset-functor-extends: poset-functor-extends(C;I;L;E;F) open_box: open_box(X;I;J;x;i) face-cube: cube(f) face-direction: direction(f) face-dimension: dimension(f) name-comp: (f g) face-map: (x:=i) nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname groupoid-cat: cat(G) groupoid: Groupoid list-diff: as-bs l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) null: null(as) cons: [a b] nil: [] list: List int_seg: {i..j-} assert: b all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q lambda: λx.A[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q l_all: (∀x∈L.P[x]) member: t ∈ T uall: [x:A]. B[x] open_box: open_box(X;I;J;x;i) int_seg: {i..j-} uimplies: supposing a guard: {T} nameset: nameset(L) lelt: i ≤ j < k sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: less_than: a < b subtype_rel: A ⊆B poset-functor-extends: poset-functor-extends(C;I;L;E;F) name-morph: name-morph(I;J) respects-equality: respects-equality(S;T) so_lambda: λ2x.t[x] so_apply: x[s] face-map: (x:=i) name-comp: (f g) compose: g true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) uext: uext(g) ifthenelse: if then else fi  btrue: tt isname: isname(z) le_int: i ≤j lt_int: i <j bnot: ¬bb bfalse: ff I-face: I-face(X;I) face-direction: direction(f) face-dimension: dimension(f) face-cube: cube(f) pi1: fst(t) pi2: snd(t) poset-cat: poset-cat(J) cat-ob: cat-ob(C) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) assert: b nequal: a ≠ b ∈  cand: c∧ B name-morph-flip: flip(f;y) l_member: (x ∈ l) le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥ 
Lemmas referenced :  name-comp_wf list-diff_wf coordinate_name_wf cname_deq_wf cons_wf face-dimension_wf cubical-nerve_wf groupoid-cat_wf select_wf I-face_wf int_seg_properties length_wf sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma nil_wf face-map_wf2 face-direction_wf name-morph_wf extd-nameset-respects-equality int_seg_wf nameset_wf istype-assert null_wf3 subtype_rel_list top_wf l_exists_wf l_member_wf not_wf equal_wf open_box_wf list_wf groupoid_wf nerve_box_label_same set_subtype_base lelt_wf int_subtype_base select_member subtype_base_sq bool_wf bool_subtype_base squash_wf true_wf istype-universe eq_int_eq_true btrue_wf subtype_rel_self iff_weakening_equal decidable__equal_int bfalse_wf int_seg_subtype_special int_seg_cases cat-ob_wf cubical-nerve-I-cube functor-ob_wf poset-cat_wf name-morph-ext name-morph_subtype nameset_subtype list-diff-subset member-list-diff member_singleton eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma istype-le eqff_to_assert bool_cases_sqequal assert-bnot neg_assert_of_eq_int uext-ap-name le_wf respects-equality-set-trivial2 extd-nameset-nil nerve_box_edge_same eq-cname_wf assert-eq-cname iff_weakening_uiff assert_wf assert_elim bnot_wf btrue_neq_bfalse not_assert_elim cat-arrow_wf nerve_box_label_wf name-morph-flip_wf nsub2_subtype_extd-nameset istype-less_than isname-name subtract_wf itermSubtract_wf int_term_value_subtract_lemma or_wf equal-wf-T-base small-category_wf functor-arrow_wf extd-nameset_wf extd-nameset_subtype_base member-poset-cat-arrow subtype_rel_set poset-cat-arrow-flip subtype_rel-equal int_seg_subtype_nat istype-false cat-functor_wf nat_properties respects-equality-product I-cube_wf respects-equality-trivial respects-equality_weakening istype-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis because_Cache setElimination rename independent_isectElimination natural_numberEquality dependent_functionElimination independent_functionElimination inhabitedIsType sqequalRule imageMemberEquality baseClosed imageElimination unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType applyEquality setIsType equalityIstype sqequalBase equalitySymmetry productIsType functionIsType functionExtensionality equalityTransitivity inrFormation_alt intEquality instantiate cumulativity universeEquality hypothesis_subsumption hyp_replacement promote_hyp equalityElimination dependent_set_memberEquality_alt applyLambdaEquality inlFormation_alt baseApply closedConclusion dependent_pairEquality_alt independent_pairEquality productEquality

Latex:
\mforall{}G:Groupoid.  \mforall{}I:Cname  List.  \mforall{}J:nameset(I)  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.
\mforall{}bx:open\_box(cubical-nerve(cat(G));I;J;x;i).
    (((\mneg{}\muparrow{}null(J))  \mwedge{}  (\mexists{}j1\mmember{}J.  (\mexists{}j2\mmember{}J.  \mneg{}(j1  =  j2))))
    {}\mRightarrow{}  (\mforall{}fc\mmember{}bx.poset-functor-extends(cat(G);I-[dimension(fc)];
                                                                      \mlambda{}x.nerve\_box\_label(bx;((dimension(fc):=direction(fc))  o  x));
                                                                      \mlambda{}z,f.  nerve\_box\_edge(bx;((dimension(fc):=direction(fc))  o  f);z);
                                                                      cube(fc))))



Date html generated: 2019_11_05-PM-00_36_11
Last ObjectModification: 2018_12_15-PM-08_45_14

Theory : cubical!sets


Home Index