Nuprl Lemma : reals-uncountable


z:ℕ ⟶ ℝ. ∀x,y:ℝ.  ((x < y)  (∃u:ℝ((x ≤ u) ∧ (u ≤ y) ∧ (∀n:ℕu ≠ n))))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rleq: x ≤ y rless: x < y real: nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) prop: top: Top so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A rless: x < y sq_exists: x:{A| B[x]} real: sq_stable: SqStable(P) squash: T nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff cand: c∧ B sq_type: SQType(T) subtract: m converges-to: lim n→∞.x[n] y rev_uimplies: rev_uimplies(P;Q) rsub: y true: True rge: x ≥ y rbetween: x≤y≤z
Lemmas referenced :  cantor-lemma2 primrec_wf real_wf rless_wf pi1_wf_top pi2_wf subtype_rel_dep_function nat_wf int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self set_wf subtype_rel_product top_wf equal_wf primrec0_lemma member_wf le_wf all_wf rleq_wf nat_properties sq_stable__less_than nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf or_wf rsub_wf rdiv_wf int-to-real_wf rless-int decidable__lt intformless_wf int_formula_prop_less_lemma exists_wf primrec-unroll eq_int_wf bool_wf equal-wf-T-base assert_wf intformeq_wf int_formula_prop_eq_lemma bnot_wf not_wf add-subtract-cancel uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot subtract_wf itermSubtract_wf int_term_value_subtract_lemma less_than_wf primrec-wf2 rleq_weakening_equal add-zero decidable__equal_int subtype_base_sq int_subtype_base rless_transitivity2 rless_transitivity1 add-associates add-swap add-commutes zero-add rleq_transitivity trivial-int-eq1 common-limit-squeeze rleq_weakening_rless nat_plus_wf rabs_wf rleq_functionality rabs-of-nonneg req_weakening radd-preserves-rleq radd_wf rminus_wf radd_functionality rminus-zero req_inversion radd-assoc radd_comm req_transitivity radd-ac radd-rminus-assoc radd-zero-both subtract-add-cancel req_wf req_functionality rleq-int-fractions not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul minus-one-mul-top add_functionality_wrt_le le-add-cancel itermMultiply_wf int_term_value_mul_lemma rleq_functionality_wrt_implies rleq_weakening rneq_wf rleq-limit constant-limit limit-shift
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination setEquality productEquality hypothesis because_Cache sqequalRule dependent_set_memberEquality independent_pairEquality isect_memberEquality voidElimination voidEquality lambdaEquality applyEquality functionEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation dependent_pairFormation equalityTransitivity equalitySymmetry independent_functionElimination functionExtensionality addEquality imageMemberEquality baseClosed imageElimination unionElimination int_eqEquality intEquality computeAll inrFormation equalityElimination impliesFunctionality instantiate cumulativity hyp_replacement dependent_set_memberFormation minusEquality multiplyEquality inlFormation

Latex:
\mforall{}z:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (\mexists{}u:\mBbbR{}.  ((x  \mleq{}  u)  \mwedge{}  (u  \mleq{}  y)  \mwedge{}  (\mforall{}n:\mBbbN{}.  u  \mneq{}  z  n))))



Date html generated: 2017_10_03-AM-09_12_16
Last ObjectModification: 2017_07_28-AM-07_43_02

Theory : reals


Home Index