Nuprl Lemma : unsat-omega_step
∀p:IntConstraints. (unsat(omega_step(p)) 
⇒ unsat(p))
Proof
Definitions occuring in Statement : 
omega_step: omega_step(p)
, 
unsat-int-problem: unsat(p)
, 
int-constraint-problem: IntConstraints
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
omega_step: omega_step(p)
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
int-constraint-problem: IntConstraints
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
int-problem-dimension: dim(p)
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nil: []
, 
it: ⋅
, 
first-success: first-success(f;L)
, 
list_ind: list_ind, 
gcd-reduce-eq-constraints: gcd-reduce-eq-constraints(sat;LL)
, 
accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L)
, 
eager-accum: eager-accum(x,a.f[x; a];y;l)
, 
exact-reduce-constraints: exact-reduce-constraints(w;j;L)
, 
evalall: evalall(t)
, 
map: map(f;as)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
subtract: n - m
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
unsat-int-problem: unsat(p)
, 
satisfies-int-constraint-problem: xs |= p
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
unit: Unit
, 
exact-eq-constraint: exact-eq-constraint(eqs;i;j)
, 
satisfiable-integer-problem: satisfiable(eqs;ineqs)
, 
exists: ∃x:A. B[x]
, 
satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs)
, 
gcd-reduce-ineq-constraints: gcd-reduce-ineq-constraints(sat;LL)
, 
cand: A c∧ B
, 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
nat_plus: ℕ+
, 
listp: A List+
, 
isl: isl(x)
, 
outl: outl(x)
, 
assert: ↑b
, 
satisfies-integer-equality: xs ⋅ as =0
, 
bool: 𝔹
, 
bnot: ¬bb
, 
int_upper: {i...}
Lemmas referenced : 
decidable__lt, 
int-problem-dimension_wf, 
nat_wf, 
top_wf, 
less_than_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
set_wf, 
list_wf, 
equal_wf, 
length_wf, 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
reduce_hd_cons_lemma, 
subtract_wf, 
null_cons_lemma, 
false_wf, 
not-lt-2, 
le_antisymmetry_iff, 
condition-implies-le, 
add-associates, 
add-commutes, 
add-swap, 
add_functionality_wrt_le, 
zero-add, 
le-add-cancel, 
first-success_wf, 
equal-wf-base-T, 
equal-wf-base, 
list_subtype_base, 
set_subtype_base, 
int_seg_wf, 
equal-wf-T-base, 
absval_wf, 
select_wf, 
decidable__le, 
not-le-2, 
sq_stable__le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
find-exact-eq-constraint_wf, 
add-zero, 
unit_wf2, 
l_all_wf, 
l_member_wf, 
satisfies-integer-equality_wf, 
satisfies-integer-inequality_wf, 
unsat-int-problem_wf, 
omega_step_wf, 
int-constraint-problem_wf, 
satisfiable-exact-reduce-constraints, 
subtype_rel_list, 
lelt_wf, 
satisfies-integer-problem_wf, 
exact-reduce-constraints_wf2, 
satisfiable-integer-problem_wf, 
nil_wf, 
l_all_nil, 
all_wf, 
not_wf, 
l_all_wf_nil, 
l_all_cons, 
satisfies-gcd-reduce-ineq-constraints, 
not-equal-2, 
minus-zero, 
cons_wf, 
gcd-reduce-ineq-constraints_wf, 
listp_wf, 
subtype_rel_sets, 
minus-minus, 
true_wf, 
satisfies-gcd-reduce-eq-constraints, 
gcd-reduce-eq-constraints_wf, 
null_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_null, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
satisfies-shadow_inequalities, 
le-add-cancel2, 
le_wf, 
shadow_inequalities_wf, 
exists_wf, 
satisfiable-elim-eq-constraints, 
append_wf, 
eager-map_wf, 
set-value-type, 
list-value-type, 
int-value-type, 
map-length, 
map_wf, 
eager-map-is-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
natural_numberEquality, 
unionElimination, 
because_Cache, 
lessCases, 
isect_memberFormation, 
sqequalAxiom, 
isect_memberEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_functionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
promote_hyp, 
hypothesis_subsumption, 
minusEquality, 
setEquality, 
baseApply, 
closedConclusion, 
productEquality, 
unionEquality, 
equalityElimination, 
dependent_set_memberEquality, 
addLevel, 
levelHypothesis, 
dependent_pairFormation, 
inlEquality, 
dependent_pairEquality, 
independent_pairEquality
Latex:
\mforall{}p:IntConstraints.  (unsat(omega\_step(p))  {}\mRightarrow{}  unsat(p))
Date html generated:
2018_05_21-PM-00_24_35
Last ObjectModification:
2018_05_19-AM-06_58_23
Theory : omega
Home
Index