Nuprl Lemma : unsat-omega_step

p:IntConstraints. (unsat(omega_step(p))  unsat(p))


Proof




Definitions occuring in Statement :  omega_step: omega_step(p) unsat-int-problem: unsat(p) int-constraint-problem: IntConstraints all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat: decidable: Dec(P) or: P ∨ Q omega_step: omega_step(p) less_than: a < b and: P ∧ Q less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: int-constraint-problem: IntConstraints tunion: x:A.B[x] pi2: snd(t) int-problem-dimension: dim(p) uimplies: supposing a sq_type: SQType(T) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] nil: [] it: first-success: first-success(f;L) list_ind: list_ind gcd-reduce-eq-constraints: gcd-reduce-eq-constraints(sat;LL) accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L) eager-accum: eager-accum(x,a.f[x; a];y;l) exact-reduce-constraints: exact-reduce-constraints(w;j;L) evalall: evalall(t) map: map(f;as) ifthenelse: if then else fi  btrue: tt cons: [a b] subtract: m bfalse: ff iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) le: A ≤ B unsat-int-problem: unsat(p) satisfies-int-constraint-problem: xs |= p int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k unit: Unit exact-eq-constraint: exact-eq-constraint(eqs;i;j) satisfiable-integer-problem: satisfiable(eqs;ineqs) exists: x:A. B[x] satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs) gcd-reduce-ineq-constraints: gcd-reduce-ineq-constraints(sat;LL) cand: c∧ B satisfies-integer-inequality: xs ⋅ as ≥0 nat_plus: + listp: List+ isl: isl(x) outl: outl(x) assert: b satisfies-integer-equality: xs ⋅ as =0 bool: 𝔹 bnot: ¬bb int_upper: {i...}
Lemmas referenced :  decidable__lt int-problem-dimension_wf nat_wf top_wf less_than_wf decidable__equal_int subtype_base_sq int_subtype_base set_wf list_wf equal_wf length_wf list-cases null_nil_lemma product_subtype_list reduce_hd_cons_lemma subtract_wf null_cons_lemma false_wf not-lt-2 le_antisymmetry_iff condition-implies-le add-associates add-commutes add-swap add_functionality_wrt_le zero-add le-add-cancel first-success_wf equal-wf-base-T equal-wf-base list_subtype_base set_subtype_base int_seg_wf equal-wf-T-base absval_wf select_wf decidable__le not-le-2 sq_stable__le minus-add minus-one-mul minus-one-mul-top find-exact-eq-constraint_wf add-zero unit_wf2 l_all_wf l_member_wf satisfies-integer-equality_wf satisfies-integer-inequality_wf unsat-int-problem_wf omega_step_wf int-constraint-problem_wf satisfiable-exact-reduce-constraints subtype_rel_list lelt_wf satisfies-integer-problem_wf exact-reduce-constraints_wf2 satisfiable-integer-problem_wf nil_wf l_all_nil all_wf not_wf l_all_wf_nil l_all_cons satisfies-gcd-reduce-ineq-constraints not-equal-2 minus-zero cons_wf gcd-reduce-ineq-constraints_wf listp_wf subtype_rel_sets minus-minus true_wf satisfies-gcd-reduce-eq-constraints gcd-reduce-eq-constraints_wf null_wf bool_wf eqtt_to_assert assert_of_null eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot satisfies-shadow_inequalities le-add-cancel2 le_wf shadow_inequalities_wf exists_wf satisfiable-elim-eq-constraints append_wf eager-map_wf set-value-type list-value-type int-value-type map-length map_wf eager-map-is-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule natural_numberEquality unionElimination because_Cache lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination productElimination independent_functionElimination instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry addEquality promote_hyp hypothesis_subsumption minusEquality setEquality baseApply closedConclusion productEquality unionEquality equalityElimination dependent_set_memberEquality addLevel levelHypothesis dependent_pairFormation inlEquality dependent_pairEquality independent_pairEquality

Latex:
\mforall{}p:IntConstraints.  (unsat(omega\_step(p))  {}\mRightarrow{}  unsat(p))



Date html generated: 2018_05_21-PM-00_24_35
Last ObjectModification: 2018_05_19-AM-06_58_23

Theory : omega


Home Index