Nuprl Lemma : implies-ip-triangle

rv:InnerProductSpace. ∀a,b,c,a':Point.  (a_b_a'  ab=a'b  ab=cb   a'  Δ(a;b;c))


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) ip-between: a_b_c ip-congruent: ab=cd inner-product-space: InnerProductSpace ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ip-triangle: Δ(a;b;c) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B req: y ip-congruent: ab=cd prop: guard: {T} uimplies: supposing a and: P ∧ Q rv-sub: y rv-minus: -x uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q ss-eq: x ≡ y not: ¬A or: P ∨ Q exists: x:A. B[x] rsub: y nat: le: A ≤ B less_than': less_than'(a;b) false: False rneq: x ≠ y less_than: a < b squash: T true: True
Lemmas referenced :  ip-triangle-lemma rv-sub_wf inner-product-space_subtype ss-sep_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ip-congruent_wf ip-between_wf ss-point_wf ss-eq_wf rv-add_wf rv-mul_wf int-to-real_wf radd_wf rmul_wf rv-minus_wf rv-0_wf rv-norm_wf real_wf rleq_wf req_wf rv-ip_wf uiff_transitivity ss-eq_functionality rv-add_functionality ss-eq_weakening rv-mul-linear rv-add-assoc rv-mul-mul rv-add-swap rv-mul-add-alt rv-mul_functionality req_transitivity radd_functionality rmul-int req_weakening radd-int rv-mul0 rv-0-add rless_functionality rv-norm_functionality ss-sep-symmetry rv-norm-positive rv-sep-iff false_wf or_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle ip-between-iff rsub_wf ip-congruent_functionality rv-sub_functionality rv-norm-equal-iff rminus_wf rv-mul-1-add req_inversion rminus-as-rmul rmul_functionality rminus-radd radd_comm rminus-rminus rmul-minus rmul_over_rminus rminus_functionality rmul-distrib rmul-one-both req_functionality rv-ip_functionality rv-add-comm rv-mul-1-add-alt radd-ac radd-assoc radd-zero-both rv-ip-mul rv-ip-mul2 rnexp_wf le_wf rv-norm-squared rnexp-positive equal_wf rless_wf rdiv_wf rless-int rmul-assoc rmul_preserves_req rmul-distrib2 rmul_comm rmul-ac radd-preserves-req radd-rminus-both rmul-zero-both rmul-rdiv-cancel2 rsub_functionality rmul-rdiv-cancel uiff_transitivity3 squash_wf true_wf rminus-int rv-mul-add rmul-int-rdiv uiff_transitivity2 ip-between_functionality ss-eq_inversion ip-between-same rv-norm0 rv-norm-is-zero rv-mul-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination applyEquality hypothesis sqequalRule because_Cache independent_functionElimination instantiate independent_isectElimination natural_numberEquality minusEquality lambdaEquality setElimination rename setEquality productEquality productElimination functionEquality unionElimination promote_hyp multiplyEquality addEquality dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry inrFormation imageMemberEquality baseClosed addLevel impliesFunctionality imageElimination voidElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c,a':Point.    (a\_b\_a'  {}\mRightarrow{}  ab=a'b  {}\mRightarrow{}  ab=cb  {}\mRightarrow{}  c  \#  a  {}\mRightarrow{}  c  \#  a'  {}\mRightarrow{}  \mDelta{}(a;b;c))



Date html generated: 2017_10_04-PM-11_59_36
Last ObjectModification: 2017_03_10-PM-07_05_55

Theory : inner!product!spaces


Home Index