Nuprl Lemma : cantor-interval-cauchy

a,b:ℝ.  ∀[f:ℕ ⟶ 𝔹]. cauchy(n.fst(cantor-interval(a;b;f;n))) supposing a ≤ b


Proof




Definitions occuring in Statement :  cantor-interval: cantor-interval(a;b;f;n) cauchy: cauchy(n.x[n]) rleq: x ≤ y real: nat: bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q cauchy: cauchy(n.x[n]) sq_exists: x:A [B[x]] implies:  Q nat: subtype_rel: A ⊆B pi1: fst(t) nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: sq_type: SQType(T) subtract: m less_than: a < b squash: T less_than': less_than'(a;b) exp: i^n primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f) true: True rev_uimplies: rev_uimplies(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) int_nzero: -o nequal: a ≠ b ∈  rdiv: (x/y) req_int_terms: t1 ≡ t2 rge: x ≥ y int_upper: {i...} pi2: snd(t)
Lemmas referenced :  le_witness_for_triv cantor-interval-inclusion cantor-interval-length istype-le rleq_wf rabs_wf rsub_wf cantor-interval_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf istype-nat bool_wf real_wf r-archimedean decidable__equal_int subtype_base_sq int_subtype_base decidable__le intformle_wf int_formula_prop_le_lemma le_weakening2 exp_wf2 mul-swap mul-commutes zero-mul exp_step istype-less_than mul_bounds_1b subtract_wf itermSubtract_wf int_term_value_subtract_lemma mul_nat_plus intformeq_wf int_formula_prop_eq_lemma log-property log_wf exp_wf4 nat_plus_subtype_nat le_functionality multiply_functionality_wrt_le le_weakening le_wf squash_wf true_wf exp-of-mul subtype_rel_self iff_weakening_equal itermMultiply_wf int_term_value_mul_lemma set_subtype_base less_than_wf exp_mul assert_of_le_int exp_preserves_le istype-false int-rdiv_wf exp_wf3 nequal_wf int-rmul_wf exp-positive-stronger rmul_wf rleq_functionality int-rdiv-req req_weakening rdiv_functionality int-rmul-req rmul_preserves_rleq rinv_wf2 req_transitivity rmul_functionality rmul-rinv3 req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rmul_preserves_rleq2 rleq-int rmul-int rleq_functionality_wrt_implies rleq_weakening_equal req_inversion rmul-rinv ge_wf subtract-1-ge-0 add-zero itermAdd_wf int_term_value_add_lemma exp_add exp_wf_nat_plus exp1 trivial-int-eq1 multiply-is-int-iff false_wf subtype_rel_function nat_wf int_seg_wf int_seg_subtype_nat rleq_transitivity rleq_weakening rabs-difference-symmetry rleq-implies-rleq radd-preserves-rleq radd_wf rabs-of-nonneg real_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination productElimination equalityTransitivity hypothesis equalitySymmetry independent_isectElimination functionIsTypeImplies inhabitedIsType rename because_Cache setElimination dependent_set_memberEquality_alt independent_functionElimination functionIsType universeIsType applyEquality equalityIstype closedConclusion natural_numberEquality inrFormation_alt unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation instantiate cumulativity intEquality dependent_set_memberFormation_alt multiplyEquality imageMemberEquality baseClosed imageElimination universeEquality sqequalBase intWeakElimination addEquality applyLambdaEquality hyp_replacement pointwiseFunctionality promote_hyp baseApply productIsType

Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  cauchy(n.fst(cantor-interval(a;b;f;n)))  supposing  a  \mleq{}  b



Date html generated: 2019_10_30-AM-07_38_10
Last ObjectModification: 2019_02_11-PM-02_12_02

Theory : reals


Home Index