Nuprl Lemma : cantor-interval-cauchy
∀a,b:ℝ.  ∀[f:ℕ ⟶ 𝔹]. cauchy(n.fst(cantor-interval(a;b;f;n))) supposing a ≤ b
Proof
Definitions occuring in Statement : 
cantor-interval: cantor-interval(a;b;f;n)
, 
cauchy: cauchy(n.x[n])
, 
rleq: x ≤ y
, 
real: ℝ
, 
nat: ℕ
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
cauchy: cauchy(n.x[n])
, 
sq_exists: ∃x:A [B[x]]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
subtract: n - m
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
exp: i^n
, 
primrec: primrec(n;b;c)
, 
primtailrec: primtailrec(n;i;b;f)
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
rge: x ≥ y
, 
int_upper: {i...}
, 
pi2: snd(t)
Lemmas referenced : 
le_witness_for_triv, 
cantor-interval-inclusion, 
cantor-interval-length, 
istype-le, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
cantor-interval_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
nat_plus_wf, 
istype-nat, 
bool_wf, 
real_wf, 
r-archimedean, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
le_weakening2, 
exp_wf2, 
mul-swap, 
mul-commutes, 
zero-mul, 
exp_step, 
istype-less_than, 
mul_bounds_1b, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
mul_nat_plus, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
log-property, 
log_wf, 
exp_wf4, 
nat_plus_subtype_nat, 
le_functionality, 
multiply_functionality_wrt_le, 
le_weakening, 
le_wf, 
squash_wf, 
true_wf, 
exp-of-mul, 
subtype_rel_self, 
iff_weakening_equal, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
set_subtype_base, 
less_than_wf, 
exp_mul, 
assert_of_le_int, 
exp_preserves_le, 
istype-false, 
int-rdiv_wf, 
exp_wf3, 
nequal_wf, 
int-rmul_wf, 
exp-positive-stronger, 
rmul_wf, 
rleq_functionality, 
int-rdiv-req, 
req_weakening, 
rdiv_functionality, 
int-rmul-req, 
rmul_preserves_rleq, 
rinv_wf2, 
req_transitivity, 
rmul_functionality, 
rmul-rinv3, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rmul_preserves_rleq2, 
rleq-int, 
rmul-int, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
req_inversion, 
rmul-rinv, 
ge_wf, 
subtract-1-ge-0, 
add-zero, 
itermAdd_wf, 
int_term_value_add_lemma, 
exp_add, 
exp_wf_nat_plus, 
exp1, 
trivial-int-eq1, 
multiply-is-int-iff, 
false_wf, 
subtype_rel_function, 
nat_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
rleq_transitivity, 
rleq_weakening, 
rabs-difference-symmetry, 
rleq-implies-rleq, 
radd-preserves-rleq, 
radd_wf, 
rabs-of-nonneg, 
real_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
productElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
because_Cache, 
setElimination, 
dependent_set_memberEquality_alt, 
independent_functionElimination, 
functionIsType, 
universeIsType, 
applyEquality, 
equalityIstype, 
closedConclusion, 
natural_numberEquality, 
inrFormation_alt, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
instantiate, 
cumulativity, 
intEquality, 
dependent_set_memberFormation_alt, 
multiplyEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeEquality, 
sqequalBase, 
intWeakElimination, 
addEquality, 
applyLambdaEquality, 
hyp_replacement, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
productIsType
Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  cauchy(n.fst(cantor-interval(a;b;f;n)))  supposing  a  \mleq{}  b
Date html generated:
2019_10_30-AM-07_38_10
Last ObjectModification:
2019_02_11-PM-02_12_02
Theory : reals
Home
Index