Nuprl Lemma : chain-rule_1

I,J:Interval. ∀f,f':I ⟶ℝ. ∀g,g':J ⟶ℝ.
  (maps-compact(I;J;x.f[x])
   f[x] continuous for x ∈ I
   f'[x] continuous for x ∈ I
   g'[x] continuous for x ∈ J
   λx.f'[x] d(f[x])/dx on I
   λx.g'[x] d(g[x])/dx on J
   λx.g'[f[x]] f'[x] d(g[f[x]])/dx on I)


Proof




Definitions occuring in Statement :  derivative: λz.g[z] d(f[x])/dx on I maps-compact: maps-compact(I;J;x.f[x]) continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval rmul: b so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a subtype_rel: A ⊆B prop: squash: T sq_stable: SqStable(P) uall: [x:A]. B[x] exists: x:A. B[x] member: t ∈ T maps-compact: maps-compact(I;J;x.f[x]) derivative: λz.g[z] d(f[x])/dx on I implies:  Q all: x:A. B[x] uiff: uiff(P;Q) top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q rneq: x ≠ y guard: {T} true: True less_than': less_than'(a;b) less_than: a < b nat_plus: + and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rless: x < y le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y cand: c∧ B continuous: f[x] continuous for x ∈ I sq_exists: x:{A| B[x]} real: rsub: y
Lemmas referenced :  req-int-fractions decidable__equal_int rmul-int-rdiv rmul_functionality_wrt_rleq2 rmul-rdiv-cancel2 rmul-rdiv-cancel req_functionality rmul_preserves_req req_wf squash_wf true_wf iff_weakening_equal zero-rleq-rabs rmul-ac rmul_comm rmul_preserves_rleq2 radd-zero-both radd-rminus-both rminus-rminus rmul-zero-both radd-int rmul_functionality rmul-distrib2 rmul-identity1 rminus-as-rmul radd-ac radd-assoc rminus-radd rmul-assoc rminus_functionality rmul_over_rminus rmul-distrib req_transitivity rabs-rmul req_inversion uimplies_transitivity radd-rminus-assoc radd_comm radd_functionality rabs_functionality req_weakening rleq_functionality uiff_transitivity r-triangle-inequality rminus_wf and_functionality_wrt_rev_uimplies rmin-rleq rmin_strict_ub rmin_wf radd_functionality_wrt_rleq radd_wf sq_stable__less_than rneq-int intformeq_wf int_formula_prop_eq_lemma equal_wf small-reciprocal-real sq_stable__rless less_than'_wf rsub_wf rmul_wf rleq_weakening_rless rleq_weakening_equal rleq_functionality_wrt_implies r-bound-property mul_nat_plus less_than_wf r-bound_wf all_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rleq-int-fractions2 decidable__le intformle_wf int_formula_prop_le_lemma continuous_functionality_wrt_subinterval i-approx_wf i-approx-is-subinterval Inorm-bound sq_stable__icompact icompact_wf rfun_subtype Inorm_wf uall_wf real_wf i-member_wf rleq_wf rabs_wf i-member-approx set_wf nat_plus_wf derivative_wf continuous_wf maps-compact_wf rfun_wf interval_wf
Rules used in proof :  lambdaEquality setEquality equalitySymmetry equalityTransitivity dependent_pairFormation independent_isectElimination because_Cache applyEquality dependent_set_memberEquality imageElimination baseClosed imageMemberEquality sqequalRule introduction independent_functionElimination hypothesis rename setElimination isectElimination lemma_by_obid cut productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality unionElimination inrFormation multiplyEquality functionEquality independent_pairFormation natural_numberEquality productEquality axiomEquality minusEquality independent_pairEquality addEquality dependent_set_memberFormation equalityEquality addLevel impliesFunctionality isect_memberFormation universeEquality

Latex:
\mforall{}I,J:Interval.  \mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g,g':J  {}\mrightarrow{}\mBbbR{}.
    (maps-compact(I;J;x.f[x])
    {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  f'[x]  continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  g'[x]  continuous  for  x  \mmember{}  J
    {}\mRightarrow{}  \mlambda{}x.f'[x]  =  d(f[x])/dx  on  I
    {}\mRightarrow{}  \mlambda{}x.g'[x]  =  d(g[x])/dx  on  J
    {}\mRightarrow{}  \mlambda{}x.g'[f[x]]  *  f'[x]  =  d(g[f[x]])/dx  on  I)



Date html generated: 2016_05_18-AM-10_15_09
Last ObjectModification: 2016_01_17-AM-00_57_38

Theory : reals


Home Index