Nuprl Lemma : mul-polynom-int-val
∀[n:ℕ]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ]. ∀[p,q:polyform(n)].  (l@mul-polynom(n;p;q) = (l@p * l@q) ∈ ℤ)
Proof
Definitions occuring in Statement : 
mul-polynom: mul-polynom(n;p;q), 
poly-int-val: l@p, 
polyform: polyform(n), 
length: ||as||, 
list: T List, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
multiply: n * m, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
mul-polynom: mul-polynom(n;p;q), 
has-value: (a)↓, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
polyform: polyform(n), 
bnot: ¬bb, 
poly-int-val: l@p, 
null: null(as), 
nil: [], 
cons: [a / b], 
le: A ≤ B, 
assert: ↑b, 
less_than': less_than'(a;b), 
int_upper: {i...}, 
nequal: a ≠ b ∈ T , 
eager-accum: eager-accum(x,a.f[x; a];y;l), 
colength: colength(L), 
less_than: a < b, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
istype: istype(T), 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a), 
respects-equality: respects-equality(S;T), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
nat_plus: ℕ+, 
subtract: n - m, 
poly-zero: poly-zero(n;p)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_properties, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
subtype_rel_self, 
polyform_wf, 
list_wf, 
list_subtype_base, 
le_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
value-type-has-value, 
polyform-value-type, 
polyconst_wf, 
int-value-type, 
poly-zero_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
poly-zero-implies, 
iff_weakening_equal, 
poly-int-val_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
eq_int_wf, 
equal-wf-base, 
eq_int_eq_true, 
btrue_wf, 
bfalse_wf, 
bool_subtype_base, 
assert_elim, 
btrue_neq_bfalse, 
istype-assert, 
bool_cases, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
list-cases, 
product_subtype_list, 
length_of_cons_lemma, 
le_weakening2, 
length_wf, 
non_neg_length, 
satisfiable-full-omega-tt, 
length_of_nil_lemma, 
add-is-int-iff, 
false_wf, 
subtype_rel-equal, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
istype-false, 
nequal-le-implies, 
zero-add, 
int_upper_properties, 
cons_wf, 
polyconst-val, 
exp_wf2, 
length_wf_nat, 
exp0_lemma, 
colength-cons-not-zero, 
colength_wf_list, 
spread_cons_lemma, 
poly_int_val_nil_cons, 
valueall-type-has-valueall, 
valueall-type-polyform, 
evalall-reduce, 
add-polynom_wf1, 
nat_wf, 
base_wf, 
null_wf, 
assert_of_null, 
append_wf, 
nil_wf, 
map_wf, 
mul-polynom_wf, 
add_nat_wf, 
add-polynom-int-val, 
subtype-respects-equality, 
null_nil_lemma, 
list_ind_nil_lemma, 
null_cons_lemma, 
list_ind_cons_lemma, 
zero-mul, 
length-append, 
poly_int_val_cons_cons, 
exp_step, 
add_nat_plus, 
add-associates, 
add-swap, 
add-commutes, 
multiply-is-int-iff, 
poly_int_val_cons_cons-sq, 
map_nil_lemma, 
map_cons_lemma, 
mul-zero, 
map-length, 
add_functionality_wrt_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
productElimination, 
because_Cache, 
unionElimination, 
applyEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
hypothesis_subsumption, 
Error :setIsType, 
intEquality, 
Error :equalityIstype, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
addEquality, 
callbyvalueReduce, 
cumulativity, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
equalityElimination, 
Error :equalityIsType1, 
int_eqReduceTrueSq, 
Error :equalityIsType4, 
Error :functionIsType, 
int_eqReduceFalseSq, 
multiplyEquality, 
promote_hyp, 
isect_memberEquality, 
voidEquality, 
dependent_pairFormation, 
lambdaEquality, 
computeAll, 
pointwiseFunctionality, 
Error :equalityIsType3, 
sqequalIntensionalEquality, 
axiomSqEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[p,q:polyform(n)].    (l@mul-polynom(n;p;q)  =  (l@p  *  l@q))
Date html generated:
2019_06_20-PM-01_53_23
Last ObjectModification:
2018_11_23-PM-03_14_52
Theory : integer!polynomials
Home
Index