Nuprl Lemma : mul-polynom-int-val

[n:ℕ]. ∀[l:{l:ℤ List| ||l|| n ∈ ℤ]. ∀[p,q:polyform(n)].  (l@mul-polynom(n;p;q) (l@p l@q) ∈ ℤ)


Proof




Definitions occuring in Statement :  mul-polynom: mul-polynom(n;p;q) poly-int-val: l@p polyform: polyform(n) length: ||as|| list: List nat: uall: [x:A]. B[x] set: {x:A| B[x]}  multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) mul-polynom: mul-polynom(n;p;q) has-value: (a)↓ squash: T true: True iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff polyform: polyform(n) bnot: ¬bb poly-int-val: l@p null: null(as) nil: [] cons: [a b] le: A ≤ B assert: b less_than': less_than'(a;b) int_upper: {i...} nequal: a ≠ b ∈  eager-accum: eager-accum(x,a.f[x; a];y;l) colength: colength(L) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] istype: istype(T) callbyvalueall: callbyvalueall has-valueall: has-valueall(a) respects-equality: respects-equality(S;T) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] nat_plus: + subtract: m poly-zero: poly-zero(n;p)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self polyform_wf list_wf list_subtype_base le_wf itermAdd_wf int_term_value_add_lemma istype-nat value-type-has-value polyform-value-type polyconst_wf int-value-type poly-zero_wf equal_wf squash_wf true_wf istype-universe poly-zero-implies iff_weakening_equal poly-int-val_wf itermMultiply_wf int_term_value_mul_lemma equal-wf-T-base bool_wf assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot eq_int_wf equal-wf-base eq_int_eq_true btrue_wf bfalse_wf bool_subtype_base assert_elim btrue_neq_bfalse istype-assert bool_cases assert_of_eq_int iff_transitivity iff_weakening_uiff list-cases product_subtype_list length_of_cons_lemma le_weakening2 length_wf non_neg_length satisfiable-full-omega-tt length_of_nil_lemma add-is-int-iff false_wf subtype_rel-equal bool_cases_sqequal assert-bnot neg_assert_of_eq_int upper_subtype_nat istype-false nequal-le-implies zero-add int_upper_properties cons_wf polyconst-val exp_wf2 length_wf_nat exp0_lemma colength-cons-not-zero colength_wf_list spread_cons_lemma poly_int_val_nil_cons valueall-type-has-valueall valueall-type-polyform evalall-reduce add-polynom_wf1 nat_wf base_wf null_wf assert_of_null append_wf nil_wf map_wf mul-polynom_wf add_nat_wf add-polynom-int-val subtype-respects-equality null_nil_lemma list_ind_nil_lemma null_cons_lemma list_ind_cons_lemma zero-mul length-append poly_int_val_cons_cons exp_step add_nat_plus add-associates add-swap add-commutes multiply-is-int-iff poly_int_val_cons_cons-sq map_nil_lemma map_cons_lemma mul-zero map-length add_functionality_wrt_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  productElimination because_Cache unionElimination applyEquality instantiate equalityTransitivity equalitySymmetry applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption Error :setIsType,  intEquality Error :equalityIstype,  baseApply closedConclusion baseClosed sqequalBase addEquality callbyvalueReduce cumulativity imageElimination universeEquality imageMemberEquality equalityElimination Error :equalityIsType1,  int_eqReduceTrueSq Error :equalityIsType4,  Error :functionIsType,  int_eqReduceFalseSq multiplyEquality promote_hyp isect_memberEquality voidEquality dependent_pairFormation lambdaEquality computeAll pointwiseFunctionality Error :equalityIsType3,  sqequalIntensionalEquality axiomSqEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[p,q:polyform(n)].    (l@mul-polynom(n;p;q)  =  (l@p  *  l@q))



Date html generated: 2019_06_20-PM-01_53_23
Last ObjectModification: 2018_11_23-PM-03_14_52

Theory : integer!polynomials


Home Index