Nuprl Lemma : term-accum_wf_wfterm

[opr,P:Type]. ∀[sort:term(opr) ⟶ ℕ]. ∀[arity:opr ⟶ ((ℕ × ℕList)]. ∀[R:P ⟶ wfterm(opr;sort;arity) ⟶ ℙ].
[Q:P
    ⟶ f:opr
    ⟶ vs:(varname() List)
    ⟶ {L:(t:wfterm(opr;sort;arity) × p:P × R[p;t]) List| 
        ||L|| < ||arity f||
        ∧ (||vs|| (fst(arity f[||L||])) ∈ ℤ)
        ∧ (∀i:ℕ||L||. ((sort (fst(L[i]))) (snd(arity f[i])) ∈ ℤ))} 
    ⟶ P]. ∀[varcase:p:P ⟶ v:{v:varname()| ¬(v nullvar() ∈ varname())}  ⟶ R[p;varterm(v)]].
[mktermcase:p:P
             ⟶ f:opr
             ⟶ bts:wf-bound-terms(opr;sort;arity;f)
             ⟶ L:{L:(t:wfterm(opr;sort;arity) × p:P × R[p;t]) List| 
                   (||L|| ||bts|| ∈ ℤ)
                   ∧ (∀i:ℕ||L||. ((fst(L[i])) (snd(bts[i])) ∈ term(opr)))
                   ∧ (∀i:ℕ||L||. ((fst(snd(L[i]))) Q[p;f;fst(bts[i]);firstn(i;L)] ∈ P))} 
             ⟶ R[p;mkwfterm(f;bts)]]. ∀[t:wfterm(opr;sort;arity)]. ∀[p:P].
  (term-accum(t with p)
   p,f,vs,tr.Q[p;f;vs;tr]
   varterm(x) with  varcase[p;x]
   mkterm(f,bts) with  trs.mktermcase[p;f;bts;trs] ∈ R[p;t])


Proof




Definitions occuring in Statement :  mkwfterm: mkwfterm(f;bts) wf-bound-terms: wf-bound-terms(opr;sort;arity;f) wfterm: wfterm(opr;sort;arity) term-accum: term-accum varterm: varterm(v) term: term(opr) nullvar: nullvar() varname: varname() firstn: firstn(n;as) select: L[n] length: ||as|| list: List int_seg: {i..j-} nat: less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) all: x:A. B[x] not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  varterm: varterm(v) wf-term: wf-term(arity;sort;t) less_than': less_than'(a;b) guard: {T} int_iseg: {i...j} cand: c∧ B wf-bound-terms: wf-bound-terms(opr;sort;arity;f) bfalse: ff true: True rev_implies:  Q iff: ⇐⇒ Q isl: isl(x) squash: T less_than: a < b pi2: snd(t) lelt: i ≤ j < k int_seg: {i..j-} pi1: fst(t) nat: exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A le: A ≤ B false: False or: P ∨ Q decidable: Dec(P) ge: i ≥  and: P ∧ Q subtype_rel: A ⊆B btrue: tt ifthenelse: if then else fi  assert: b all: x:A. B[x] so_apply: x[s1;s2;s3;s4] so_apply: x[s] wfterm: wfterm(opr;sort;arity) so_apply: x[s1;s2] so_lambda: λ2x.t[x] prop: uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 l_member: (x ∈ l) bound-term: bound-term(opr) mkwfterm: mkwfterm(f;bts) sq_type: SQType(T) respects-equality: respects-equality(S;T) rev_uimplies: rev_uimplies(P;Q) mkterm: mkterm(opr;bts) so_lambda: λ2y.t[x; y] so_lambda: so_lambda4 coterm-fun: coterm-fun(opr;T) isvarterm: isvarterm(t) outr: outr(x) term-bts: term-bts(t) wfbts: wfbts(t) sq_stable: SqStable(P) let: let nil: [] select: L[n] term-opr: term-opr(t) bnot: ¬bb cons: [a b]
Lemmas referenced :  varterm_wf nullvar_wf mkwfterm_wf istype-universe true_wf squash_wf equal_wf istype-false int_seg_subtype_nat top_wf subtype_rel_list select-firstn length_firstn int_formula_prop_eq_lemma intformeq_wf iff_weakening_equal istype-le lelt_wf subtype_rel_sets_simple length_firstn_eq firstn_wf wfterm_wf istype-void istype-true decidable_wf subtype_rel_self list_wf decidable__assert decidable__all_int_seg decidable__equal_int varname_wf length_wf_nat istype-less_than int_formula_prop_less_lemma intformless_wf decidable__lt int_seg_properties int_seg_wf all_wf int_subtype_base le_wf set_subtype_base int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le non_neg_length select_wf istype-nat pi1_wf equal-wf-base nat_wf length_wf less_than_wf decidable__and2 wf_term_var_lemma term_wf istype-assert wf-term_wf assert_wf isect_wf term-accum_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert not_wf bnot_wf bool_wf equal-wf-T-base l_member_wf list-subtype bfalse_wf btrue_wf assert_functionality_wrt_uiff nat_properties uimplies_subtype subtype_rel_dep_function bound-term_wf mkterm_wf bool_subtype_base subtype_base_sq assert_elim assert-wf-mkterm respects-equality-set-trivial2 iff_imp_equal_bool assert_of_tt int_term_value_add_lemma itermAdd_wf pi2_wf term-size_wf lsum_wf term_accum_mkterm_lemma term_size_mkterm_lemma term_accum_varterm_lemma term_size_var_lemma coterm-fun_wf subtype_rel_weakening term-ext int_term_value_subtract_lemma itermSubtract_wf subtract_wf subtract-1-ge-0 ge_wf subtype_rel_product subtype_rel_set isvarterm_wf wfbts_wf term-size-positive false_wf add-is-int-iff select_member sq_stable__le summand-le-lsum firstn_all list_accum_append first0 list_accum_cons_lemma list_accum_nil_lemma firstn_length firstn_decomp istype-base stuck-spread length_of_nil_lemma nil_wf length-append length_of_cons_lemma cons_wf append_wf iff_weakening_uiff assert-bnot bool_cases_sqequal assert_of_lt_int lt_int_wf select-append
Rules used in proof :  universeEquality baseClosed imageMemberEquality setIsType productIsType functionEquality functionExtensionality instantiate functionIsType sqequalBase intEquality imageElimination rename setElimination equalitySymmetry equalityTransitivity equalityIstype inhabitedIsType voidElimination independent_pairFormation int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation natural_numberEquality productElimination unionElimination independent_isectElimination isect_memberEquality_alt closedConclusion because_Cache isectEquality productEquality lambdaFormation_alt Error :memTop,  dependent_functionElimination universeIsType dependent_set_memberEquality_alt applyEquality sqequalRule lambdaEquality_alt hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut equalityElimination isectIsType dependent_pairEquality_alt setEquality independent_pairEquality cumulativity applyLambdaEquality hyp_replacement addEquality hypothesis_subsumption promote_hyp functionIsTypeImplies axiomEquality intWeakElimination axiomSqEquality baseApply pointwiseFunctionality minusEquality

Latex:
\mforall{}[opr,P:Type].  \mforall{}[sort:term(opr)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[arity:opr  {}\mrightarrow{}  ((\mBbbN{}  \mtimes{}  \mBbbN{})  List)].  \mforall{}[R:P
                                                                                                                                                      {}\mrightarrow{}  wfterm(opr;sort;arity)
                                                                                                                                                      {}\mrightarrow{}  \mBbbP{}].
\mforall{}[Q:P
        {}\mrightarrow{}  f:opr
        {}\mrightarrow{}  vs:(varname()  List)
        {}\mrightarrow{}  \{L:(t:wfterm(opr;sort;arity)  \mtimes{}  p:P  \mtimes{}  R[p;t])  List| 
                ||L||  <  ||arity  f||
                \mwedge{}  (||vs||  =  (fst(arity  f[||L||])))
                \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  ((sort  (fst(L[i])))  =  (snd(arity  f[i]))))\} 
        {}\mrightarrow{}  P].  \mforall{}[varcase:p:P  {}\mrightarrow{}  v:\{v:varname()|  \mneg{}(v  =  nullvar())\}    {}\mrightarrow{}  R[p;varterm(v)]].
\mforall{}[mktermcase:p:P
                          {}\mrightarrow{}  f:opr
                          {}\mrightarrow{}  bts:wf-bound-terms(opr;sort;arity;f)
                          {}\mrightarrow{}  L:\{L:(t:wfterm(opr;sort;arity)  \mtimes{}  p:P  \mtimes{}  R[p;t])  List| 
                                      (||L||  =  ||bts||)
                                      \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  ((fst(L[i]))  =  (snd(bts[i]))))
                                      \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  ((fst(snd(L[i])))  =  Q[p;f;fst(bts[i]);firstn(i;L)]))\} 
                          {}\mrightarrow{}  R[p;mkwfterm(f;bts)]].  \mforall{}[t:wfterm(opr;sort;arity)].  \mforall{}[p:P].
    (term-accum(t  with  p)
      p,f,vs,tr.Q[p;f;vs;tr]
      varterm(x)  with  p  {}\mRightarrow{}  varcase[p;x]
      mkterm(f,bts)  with  p  {}\mRightarrow{}  trs.mktermcase[p;f;bts;trs]  \mmember{}  R[p;t])



Date html generated: 2020_05_19-PM-10_00_09
Last ObjectModification: 2020_03_11-PM-09_42_33

Theory : terms


Home Index