Nuprl Lemma : rat-complex-boundary-boundary

[k,n:ℕ]. ∀[K:n-dim-complex].  (∂(∂(K)) [])


Proof




Definitions occuring in Statement :  rat-complex-boundary: (K) rational-cube-complex: n-dim-complex nil: [] nat: uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} rational-cube-complex: n-dim-complex and: P ∧ Q rat-complex-boundary: (K) rat-cube-sub-complex: rat-cube-sub-complex(P;L) filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind face-complex: face-complex(k;L) remove-repeats: remove-repeats(eq;L) concat: concat(ll) map: map(f;as) nil: [] it: subtype_rel: A ⊆B so_lambda: λ2x.t[x] int_seg: {i..j-} so_apply: x[s] prop: sq_stable: SqStable(P) ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top squash: T iff: ⇐⇒ Q in-complex-boundary: in-complex-boundary(k;f;K) nat_plus: + true: True rev_implies:  Q uiff: uiff(P;Q) bfalse: ff band: p ∧b q ifthenelse: if then else fi  cons: [a b] assert: b isEven: isEven(n) eq_int: (i =z j) modulus: mod n remainder: rem m btrue: tt l_member: (x ∈ l) le: A ≤ B less_than': less_than'(a;b) select: L[n] cand: c∧ B immediate-rc-face: immediate-rc-face(k;f;c) exists!: !x:T. P[x] bool: 𝔹 unit: Unit rat-cube-dimension: dim(c) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base rational-cube-complex_wf istype-nat boundary-of-0-dim-is-nil rat-complex-boundary_wf sq_stable__l_all rational-cube_wf equal-wf-base rat-cube-dimension_wf set_subtype_base lelt_wf l_member_wf sq_stable__equal nat_properties full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__le intformle_wf int_formula_prop_le_lemma no-member-sq-nil subtract_wf istype-le member-rat-complex-boundary-n filter_wf5 face-complex_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than is-rat-cube-face_wf lsum-split in-complex-boundary_wf equal_wf squash_wf true_wf istype-universe length_wf subtype_rel_self iff_weakening_equal count-related-pairs swap-filter-filter lsum-of-even l_all_iff assert_wf isEven_wf filter-filter bool_cases bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf bfalse_wf list-cases product_subtype_list length_of_nil_lemma list_wf length_of_cons_lemma add_nat_plus length_wf_nat nat_plus_properties add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf select_wf member_filter_2 assert_of_band istype-assert assert-is-rat-cube-face le_wf member-face-complex member-rat-cube-faces face-of-face-pairity rat-cube-face_wf no_repeats_wf no_repeats_filter remove-repeats-no_repeats rc-deq_wf concat_wf map_wf inhabited-rat-cube_wf rat-cube-faces_wf subtype_rel_list nil_wf eqff_to_assert assert_of_bnot iff_weakening_uiff member_filter cons_wf decidable__equal_rc cons_member no_repeats_cons list-is-singleton-iff odd-iff-not-even odd-plus-even lsum_wf bnot_wf odd-lsum-of-odd isOdd_wf member-rat-complex-boundary even-iff-not-odd
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination axiomSqEquality universeIsType sqequalRule isect_memberEquality_alt isectIsTypeImplies inhabitedIsType equalityTransitivity equalitySymmetry productElimination applyEquality lambdaEquality_alt lambdaFormation_alt minusEquality addEquality baseClosed setIsType axiomEquality functionIsTypeImplies approximateComputation dependent_pairFormation_alt int_eqEquality voidElimination independent_pairFormation imageMemberEquality imageElimination equalityIstype dependent_set_memberEquality_alt universeEquality promote_hyp hypothesis_subsumption applyLambdaEquality pointwiseFunctionality baseApply closedConclusion productIsType sqequalBase functionIsType equalityElimination setEquality productEquality inlFormation_alt hyp_replacement unionIsType inrFormation_alt

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].    (\mpartial{}(\mpartial{}(K))  \msim{}  [])



Date html generated: 2020_05_20-AM-09_23_17
Last ObjectModification: 2019_11_13-PM-03_11_03

Theory : rationals


Home Index