Nuprl Lemma : reliable-env-property
∀[M:Type ─→ Type]
  ∀S0:InitialSystem(P.M[P]). ∀n2m:ℕ ─→ pMsg(P.M[P]). ∀l2m:Id ─→ pMsg(P.M[P]). ∀env:pEnvType(P.M[P]).
    let r = pRun(S0;env;n2m;l2m) in
        reliable-env(env; r)
        
⇒ (∀tn:run-msg-commands(r)
              ∃e:runEvents(r)
               let t,n = tn 
               in (run-info(r;e)
                  = intransit-to-info(n2m;l2m;r;env;run-event-step(e);run-command(r;t;n))
                  ∈ (ℤ × Id × pMsg(P.M[P])))
                  ∧ (run-event-loc(e) = (fst(snd(run-command(r;t;n)))) ∈ Id)) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
intransit-to-info: intransit-to-info(n2m;l2m;r;env;t;lbl)
, 
run-msg-commands: run-msg-commands(r)
, 
run-command: run-command(r;t;n)
, 
reliable-env: reliable-env(env; r)
, 
InitialSystem: InitialSystem(P.M[P])
, 
run-event-step: run-event-step(e)
, 
run-event-loc: run-event-loc(e)
, 
runEvents: runEvents(r)
, 
run-info: run-info(r;e)
, 
pRun: pRun(S0;env;nat2msg;loc2msg)
, 
pEnvType: pEnvType(T.M[T])
, 
pMsg: pMsg(P.M[P])
, 
Id: Id
, 
strong-type-continuous: Continuous+(T.F[T])
, 
nat: ℕ
, 
let: let, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ─→ B[x]
, 
spread: spread def, 
product: x:A × B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
run-command-node_wf, 
l_member_wf, 
run-command_wf, 
pInTransit_wf, 
com-kind_wf, 
cons_wf, 
nil_wf, 
nat_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
squash_wf, 
pRunType_wf, 
add-zero, 
le_wf, 
member-less_than, 
subtype_base_sq, 
int_subtype_base, 
pRun_wf2, 
and_wf, 
equal_wf, 
Id_wf, 
pMsg_wf, 
unit_wf2, 
top_wf, 
ldag_wf, 
pi2_wf, 
lg-size_wf, 
less_than_transitivity2, 
subtract_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
add-associates, 
add-swap, 
add-commutes, 
pRun_wf, 
fulpRunType_wf, 
zero-le-nat, 
System_wf, 
subtype_rel_dep_function, 
int_seg_wf, 
int_seg_subtype-nat, 
false_wf, 
subtype_rel_self, 
all_wf, 
lg-label_wf, 
lelt_wf, 
not_wf, 
assert_wf, 
lg-is-source_wf, 
lt_int_wf, 
bnot_wf, 
assert_elim, 
bfalse_wf, 
btrue_neq_bfalse, 
bool_cases, 
assert_of_lt_int, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
decidable__le, 
assert_witness, 
decidable__lt, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add_functionality_wrt_le, 
le-add-cancel, 
eq_atom_wf, 
assert_of_eq_atom, 
lg-size-deliver-msg, 
comm-msg_wf, 
lg-remove_wf_dag, 
is-dag_wf, 
true_wf, 
lg-size-remove, 
iff_weakening_equal, 
less-iff-le, 
minus-minus, 
less_than_transitivity1, 
lg-remove_wf, 
deliver-msg_wf, 
neg_assert_of_eq_atom, 
le_antisymmetry_iff, 
lg-label-deliver-msg, 
lg-label-remove, 
list_wf, 
component_wf, 
trivial-int-eq1, 
add-mul-special, 
zero-mul, 
zero-add, 
sq_stable__le, 
subtract-is-less, 
le_weakening, 
exists_wf, 
runEvents_wf, 
run-info_wf, 
intransit-to-info_wf, 
run-event-step_wf, 
run-event-step-positive, 
pi1_wf_top, 
set_subtype_base, 
run-event-loc_wf, 
pCom_wf, 
less_than_irreflexivity, 
int_upper_subtype_nat, 
nat_properties, 
nequal-le-implies, 
le_weakening2, 
le-add-cancel-alt, 
member_wf, 
strong-type-continuous_wf, 
pEnvType_wf, 
InitialSystem_wf, 
nat_plus_wf, 
subtype_rel_product, 
labeled-graph_wf, 
is-run-event_wf, 
subtype_rel-equal, 
decidable__equal_int, 
not-equal-2, 
assert-eq-id, 
atom_subtype_base, 
cons_member, 
nil_member, 
or_wf, 
equal-wf-base, 
equal-wf-T-base, 
uiff_transitivity, 
isect_wf, 
member_singleton, 
command-to-msg_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}S0:InitialSystem(P.M[P]).  \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}env:pEnvType(P.M[P]).
        let  r  =  pRun(S0;env;n2m;l2m)  in
                reliable-env(env;  r)
                {}\mRightarrow{}  (\mforall{}tn:run-msg-commands(r)
                            \mexists{}e:runEvents(r)
                              let  t,n  =  tn 
                              in  (run-info(r;e)
                                    =  intransit-to-info(n2m;l2m;r;env;run-event-step(e);run-command(r;t;n)))
                                    \mwedge{}  (run-event-loc(e)  =  (fst(snd(run-command(r;t;n)))))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2015_07_23-AM-11_18_43
Last ObjectModification:
2015_02_04-PM-05_05_41
Home
Index