Nuprl Lemma : altWind_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[P:altW(A;a.B[a]) ⟶ ℙ]. ∀[h:∀w:altW(A;a.B[a])
                                                         ((∀b:coW-dom(a.B[a];w). P[altW-item(w;b)])  P[w])].
[w:altW(A;a.B[a])].
  (altWind(h;w) ∈ P[w])


Proof




Definitions occuring in Statement :  altWind: altWind(h;w) altW-item: altW-item(w;b) altW: altW(A;a.B[a]) coW-dom: coW-dom(a.B[a];w) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q altW: altW(A;a.B[a]) subtype_rel: A ⊆B prop: nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True exists: x:A. B[x] eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt squash: T coW-wfdd: coW-wfdd(a.B[a];w) sq_stable: SqStable(P) guard: {T} bool: 𝔹 unit: Unit it: bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b ge: i ≥  int_upper: {i...} bdd-all: bdd-all(n;i.P[i]) less_than: a < b copath-length: copath-length(p) pi1: fst(t) copath-nil: () band: p ∧b q copath-at: copath-at(w;p) coPath-at: coPath-at(n;w;p) altWind: altWind(h;w) copath: copath(a.B[a];w) coPath: coPath(a.B[a];w;n) altW-item: altW-item(w;b) nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  altW_wf istype-universe coW-dom_wf altW-item_wf copath_wf less_than_wf equal_wf copath-length_wf subtract_wf decidable__le istype-false not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top istype-void nat_wf minus-add istype-int minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt le_wf copathAgree_wf decidable__exists_int_seg not_wf int_seg_wf decidable__not decidable__int_equal exists_wf bdd_all_zero_lemma all_wf sq_stable__le add-subtract-cancel false_wf lelt_wf it_wf assert_of_eq_int assert-bdd-all bdd-all_wf bnot_wf less_than_irreflexivity le_weakening less_than_transitivity1 assert_wf equal-wf-T-base bool_wf eq_int_wf uiff_transitivity eqtt_to_assert iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat nat_properties nequal-le-implies int_subtype_base primrec1_lemma copath-nil_wf copath-at_wf int_upper_wf ge_wf coPath_wf istype-top subtract-1-ge-0 equal-wf-base coW-item_wf copathAgree-extend copath-extend_wf set_subtype_base squash_wf true_wf eq_int_eq_false not-equal-2 le-add-cancel2 bfalse_wf subtype_rel_self iff_weakening_equal bool_cases copath-at-extend length-copath-extend add_functionality_wrt_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  extract_by_obid isectElimination thin hypothesisEquality Error :lambdaEquality_alt,  applyEquality instantiate Error :isect_memberEquality_alt,  because_Cache Error :functionIsType,  setElimination rename universeEquality strong_bar_Induction functionEquality natural_numberEquality intEquality Error :dependent_set_memberEquality_alt,  independent_pairFormation dependent_functionElimination unionElimination Error :lambdaFormation_alt,  voidElimination productElimination independent_functionElimination independent_isectElimination addEquality minusEquality Error :inhabitedIsType,  Error :productIsType,  Error :inlFormation_alt,  Error :inrFormation_alt,  baseClosed imageMemberEquality imageElimination functionExtensionality cumulativity voidEquality isect_memberEquality lambdaEquality lambdaFormation dependent_set_memberEquality multiplyEquality dependent_pairFormation promote_hyp allFunctionality equalityElimination impliesFunctionality Error :dependent_pairFormation_alt,  Error :equalityIsType1,  hypothesis_subsumption intWeakElimination baseApply closedConclusion Error :equalityIsType4,  int_eqReduceTrueSq Error :equalityIsType2,  int_eqReduceFalseSq

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:altW(A;a.B[a])  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[h:\mforall{}w:altW(A;a.B[a])
                                                                                                                  ((\mforall{}b:coW-dom(a.B[a];w).  P[altW-item(w;b)])
                                                                                                                  {}\mRightarrow{}  P[w])].  \mforall{}[w:altW(A;a.B[a])].
    (altWind(h;w)  \mmember{}  P[w])



Date html generated: 2019_06_20-PM-01_12_35
Last ObjectModification: 2019_01_02-PM-01_35_50

Theory : co-recursion-2


Home Index