Nuprl Lemma : altWind_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[P:altW(A;a.B[a]) ⟶ ℙ]. ∀[h:∀w:altW(A;a.B[a])
                                                         ((∀b:coW-dom(a.B[a];w). P[altW-item(w;b)]) 
⇒ P[w])].
∀[w:altW(A;a.B[a])].
  (altWind(h;w) ∈ P[w])
Proof
Definitions occuring in Statement : 
altWind: altWind(h;w)
, 
altW-item: altW-item(w;b)
, 
altW: altW(A;a.B[a])
, 
coW-dom: coW-dom(a.B[a];w)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
altW: altW(A;a.B[a])
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
exists: ∃x:A. B[x]
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
squash: ↓T
, 
coW-wfdd: coW-wfdd(a.B[a];w)
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
ge: i ≥ j 
, 
int_upper: {i...}
, 
bdd-all: bdd-all(n;i.P[i])
, 
less_than: a < b
, 
copath-length: copath-length(p)
, 
pi1: fst(t)
, 
copath-nil: ()
, 
band: p ∧b q
, 
copath-at: copath-at(w;p)
, 
coPath-at: coPath-at(n;w;p)
, 
altWind: altWind(h;w)
, 
copath: copath(a.B[a];w)
, 
coPath: coPath(a.B[a];w;n)
, 
altW-item: altW-item(w;b)
, 
nequal: a ≠ b ∈ T 
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
altW_wf, 
istype-universe, 
coW-dom_wf, 
altW-item_wf, 
copath_wf, 
less_than_wf, 
equal_wf, 
copath-length_wf, 
subtract_wf, 
decidable__le, 
istype-false, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
istype-void, 
nat_wf, 
minus-add, 
istype-int, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
le-add-cancel-alt, 
le_wf, 
copathAgree_wf, 
decidable__exists_int_seg, 
not_wf, 
int_seg_wf, 
decidable__not, 
decidable__int_equal, 
exists_wf, 
bdd_all_zero_lemma, 
all_wf, 
sq_stable__le, 
add-subtract-cancel, 
false_wf, 
lelt_wf, 
it_wf, 
assert_of_eq_int, 
assert-bdd-all, 
bdd-all_wf, 
bnot_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
assert_wf, 
equal-wf-T-base, 
bool_wf, 
eq_int_wf, 
uiff_transitivity, 
eqtt_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
nat_properties, 
nequal-le-implies, 
int_subtype_base, 
primrec1_lemma, 
copath-nil_wf, 
copath-at_wf, 
int_upper_wf, 
ge_wf, 
coPath_wf, 
istype-top, 
subtract-1-ge-0, 
equal-wf-base, 
coW-item_wf, 
copathAgree-extend, 
copath-extend_wf, 
set_subtype_base, 
squash_wf, 
true_wf, 
eq_int_eq_false, 
not-equal-2, 
le-add-cancel2, 
bfalse_wf, 
subtype_rel_self, 
iff_weakening_equal, 
bool_cases, 
copath-at-extend, 
length-copath-extend, 
add_functionality_wrt_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
applyEquality, 
instantiate, 
Error :isect_memberEquality_alt, 
because_Cache, 
Error :functionIsType, 
setElimination, 
rename, 
universeEquality, 
strong_bar_Induction, 
functionEquality, 
natural_numberEquality, 
intEquality, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
Error :lambdaFormation_alt, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
addEquality, 
minusEquality, 
Error :inhabitedIsType, 
Error :productIsType, 
Error :inlFormation_alt, 
Error :inrFormation_alt, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
functionExtensionality, 
cumulativity, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
multiplyEquality, 
dependent_pairFormation, 
promote_hyp, 
allFunctionality, 
equalityElimination, 
impliesFunctionality, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType1, 
hypothesis_subsumption, 
intWeakElimination, 
baseApply, 
closedConclusion, 
Error :equalityIsType4, 
int_eqReduceTrueSq, 
Error :equalityIsType2, 
int_eqReduceFalseSq
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:altW(A;a.B[a])  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[h:\mforall{}w:altW(A;a.B[a])
                                                                                                                  ((\mforall{}b:coW-dom(a.B[a];w).  P[altW-item(w;b)])
                                                                                                                  {}\mRightarrow{}  P[w])].  \mforall{}[w:altW(A;a.B[a])].
    (altWind(h;w)  \mmember{}  P[w])
Date html generated:
2019_06_20-PM-01_12_35
Last ObjectModification:
2019_01_02-PM-01_35_50
Theory : co-recursion-2
Home
Index