Nuprl Lemma : satisfies-shadow-inequalities

[n:ℕ]. ∀[ineqs:{L:ℤ List| ||L|| n ∈ ℤ}  List]. ∀[i:ℕ+n]. ∀[xs:ℤ List].
  (∀as∈shadow-inequalities(i;ineqs).xs\i ⋅ as ≥0) supposing (∀as∈ineqs.xs ⋅ as ≥0)


Proof




Definitions occuring in Statement :  shadow-inequalities: shadow-inequalities(i;ineqs) list-delete: as\i satisfies-integer-inequality: xs ⋅ as ≥0 l_all: (∀x∈L.P[x]) length: ||as|| list: List int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a l_all: (∀x∈L.P[x]) all: x:A. B[x] satisfies-integer-inequality: xs ⋅ as ≥0 and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B ge: i ≥  subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B sq_type: SQType(T) guard: {T} sq_stable: SqStable(P) squash: T decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) true: True shadow-inequalities: shadow-inequalities(i;ineqs) has-value: (a)↓ top: Top less_than: a < b cons: [a b] assert: b ifthenelse: if then else fi  bnot: ¬bb bfalse: ff btrue: tt it: unit: Unit bool: 𝔹 so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] list-delete: as\i
Lemmas referenced :  member-less_than le_witness_for_triv l_all_wf list_wf equal-wf-base list_subtype_base int_subtype_base set_subtype_base le_wf istype-int satisfies-integer-inequality_wf l_member_wf int_seg_wf istype-nat subtype_rel_list equal-wf-base-T subtype_base_sq select_wf sq_stable__le set_wf equal_wf less_than_transitivity1 length_wf le_weakening list-set-type map_wf list-delete_wf filter_wf5 eq_int_wf decidable__le istype-false not-le-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates le-add-cancel list-valueall-type int-valueall-type evalall-reduce value-type-has-value list-value-type l_all_append subtract_wf set-value-type squash_wf true_wf length-shadow-vec false_wf iff_weakening_equal shadow-vec_wf lelt_wf lt_int_wf equal_functionality_wrt_subtype_rel2 less_than_wf eager-product-map_wf istype-universe length-list-delete int_seg_subtype_nat subtype_rel_self istype-void filter_type l_all_implies_l_all_filter assert_wf l_all_eager_product-map le_weakening2 assert_of_lt_int add-swap minus-minus le_antisymmetry_iff less-iff-le not-lt-2 decidable__lt le-add-cancel2 not-ge-2 ge_wf hd_wf product_subtype_list list-cases length_of_nil_lemma iff_weakening_uiff assert-bnot bool_subtype_base bool_wf bool_cases_sqequal eqff_to_assert less_than_irreflexivity istype-top eqtt_to_assert length_of_cons_lemma reduce_hd_cons_lemma spread_cons_lemma shadow-vec-property l_all_iff member_filter_2 member_map assert_of_eq_int add-zero top_wf int-dot-select zero-mul integer-dot-product_wf eager-append-is-append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality axiomEquality hypothesis extract_by_obid isectElimination setElimination rename equalityTransitivity equalitySymmetry independent_isectElimination functionIsTypeImplies inhabitedIsType universeIsType setEquality intEquality baseApply closedConclusion baseClosed applyEquality because_Cache natural_numberEquality setIsType equalityIstype sqequalBase isect_memberEquality_alt isectIsTypeImplies lambdaFormation lambdaEquality instantiate cumulativity independent_functionElimination imageMemberEquality imageElimination lambdaFormation_alt dependent_set_memberEquality_alt unionElimination independent_pairFormation voidElimination addEquality Error :memTop,  minusEquality callbyvalueReduce universeEquality equalityUniverse levelHypothesis dependent_set_memberEquality isect_memberEquality voidEquality dependent_pairFormation productEquality equalityIsType4 productIsType hyp_replacement promote_hyp hypothesis_subsumption equalityIsType1 equalityIsType2 dependent_pairFormation_alt axiomSqEquality lessCases equalityElimination isect_memberFormation

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[ineqs:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List].  \mforall{}[i:\mBbbN{}\msupplus{}n].  \mforall{}[xs:\mBbbZ{}  List].
    (\mforall{}as\mmember{}shadow-inequalities(i;ineqs).xs\mbackslash{}i  \mcdot{}  as  \mgeq{}0)  supposing  (\mforall{}as\mmember{}ineqs.xs  \mcdot{}  as  \mgeq{}0)



Date html generated: 2020_05_19-PM-09_39_28
Last ObjectModification: 2020_01_04-PM-07_58_43

Theory : omega


Home Index