Nuprl Lemma : satisfies-shadow-inequalities
∀[n:ℕ]. ∀[ineqs:{L:ℤ List| ||L|| = n ∈ ℤ}  List]. ∀[i:ℕ+n]. ∀[xs:ℤ List].
  (∀as∈shadow-inequalities(i;ineqs).xs\i ⋅ as ≥0) supposing (∀as∈ineqs.xs ⋅ as ≥0)
Proof
Definitions occuring in Statement : 
shadow-inequalities: shadow-inequalities(i;ineqs)
, 
list-delete: as\i
, 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
l_all: (∀x∈L.P[x])
, 
all: ∀x:A. B[x]
, 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
ge: i ≥ j 
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
shadow-inequalities: shadow-inequalities(i;ineqs)
, 
has-value: (a)↓
, 
top: Top
, 
less_than: a < b
, 
cons: [a / b]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
bfalse: ff
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
list-delete: as\i
Lemmas referenced : 
member-less_than, 
le_witness_for_triv, 
l_all_wf, 
list_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
set_subtype_base, 
le_wf, 
istype-int, 
satisfies-integer-inequality_wf, 
l_member_wf, 
int_seg_wf, 
istype-nat, 
subtype_rel_list, 
equal-wf-base-T, 
subtype_base_sq, 
select_wf, 
sq_stable__le, 
set_wf, 
equal_wf, 
less_than_transitivity1, 
length_wf, 
le_weakening, 
list-set-type, 
map_wf, 
list-delete_wf, 
filter_wf5, 
eq_int_wf, 
decidable__le, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
list-valueall-type, 
int-valueall-type, 
evalall-reduce, 
value-type-has-value, 
list-value-type, 
l_all_append, 
subtract_wf, 
set-value-type, 
squash_wf, 
true_wf, 
length-shadow-vec, 
false_wf, 
iff_weakening_equal, 
shadow-vec_wf, 
lelt_wf, 
lt_int_wf, 
equal_functionality_wrt_subtype_rel2, 
less_than_wf, 
eager-product-map_wf, 
istype-universe, 
length-list-delete, 
int_seg_subtype_nat, 
subtype_rel_self, 
istype-void, 
filter_type, 
l_all_implies_l_all_filter, 
assert_wf, 
l_all_eager_product-map, 
le_weakening2, 
assert_of_lt_int, 
add-swap, 
minus-minus, 
le_antisymmetry_iff, 
less-iff-le, 
not-lt-2, 
decidable__lt, 
le-add-cancel2, 
not-ge-2, 
ge_wf, 
hd_wf, 
product_subtype_list, 
list-cases, 
length_of_nil_lemma, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
less_than_irreflexivity, 
istype-top, 
eqtt_to_assert, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
spread_cons_lemma, 
shadow-vec-property, 
l_all_iff, 
member_filter_2, 
member_map, 
assert_of_eq_int, 
add-zero, 
top_wf, 
int-dot-select, 
zero-mul, 
integer-dot-product_wf, 
eager-append-is-append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
setEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
setIsType, 
equalityIstype, 
sqequalBase, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
lambdaFormation, 
lambdaEquality, 
instantiate, 
cumulativity, 
independent_functionElimination, 
imageMemberEquality, 
imageElimination, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
addEquality, 
Error :memTop, 
minusEquality, 
callbyvalueReduce, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
dependent_set_memberEquality, 
isect_memberEquality, 
voidEquality, 
dependent_pairFormation, 
productEquality, 
equalityIsType4, 
productIsType, 
hyp_replacement, 
promote_hyp, 
hypothesis_subsumption, 
equalityIsType1, 
equalityIsType2, 
dependent_pairFormation_alt, 
axiomSqEquality, 
lessCases, 
equalityElimination, 
isect_memberFormation
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[ineqs:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List].  \mforall{}[i:\mBbbN{}\msupplus{}n].  \mforall{}[xs:\mBbbZ{}  List].
    (\mforall{}as\mmember{}shadow-inequalities(i;ineqs).xs\mbackslash{}i  \mcdot{}  as  \mgeq{}0)  supposing  (\mforall{}as\mmember{}ineqs.xs  \mcdot{}  as  \mgeq{}0)
Date html generated:
2020_05_19-PM-09_39_28
Last ObjectModification:
2020_01_04-PM-07_58_43
Theory : omega
Home
Index