Nuprl Lemma : divisor-test_wf
∀[n:ℕ]. ∀[i:ℕ+]. ∀[j:ℤ].
  (divisor-test(n;i;j) ∈ {n1:ℤ| n1 < n ∧ (2 ≤ n1) ∧ (n1 | n)}  ∨ (gcd(n;iseg_product(i;j)) = 1 ∈ ℤ)) supposing ((i ≤ j) \000Cand j < n)
Proof
Definitions occuring in Statement : 
divisor-test: divisor-test(n;i;j)
, 
iseg_product: iseg_product(i;j)
, 
divides: b | a
, 
gcd: gcd(a;b)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
divisor-test: divisor-test(n;i;j)
, 
has-value: (a)↓
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
gcd: gcd(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
exposed-bfalse: exposed-bfalse
, 
cand: A c∧ B
, 
iseg_product: iseg_product(i;j)
, 
int_nzero: ℤ-o
, 
subtract: n - m
, 
coprime: CoPrime(a,b)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
subtract_wf, 
nat_plus_wf, 
nat_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
value-type-has-value, 
set-value-type, 
int-value-type, 
iseg_product_rem_wf, 
less_than_transitivity1, 
less_than_transitivity2, 
le_weakening2, 
nat_plus_properties, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
subtype_base_sq, 
int_subtype_base, 
iseg_product_wf, 
better-gcd-gcd, 
eq_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
gcd_wf, 
equal_wf, 
iseg_product_rem_property, 
iff_weakening_equal, 
rem_rem_to_rem, 
gcd_com, 
lt_int_wf, 
assert_of_lt_int, 
le_int_wf, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
gcd_is_divisor_1, 
divides_wf, 
equal-wf-base, 
true_wf, 
set_subtype_base, 
combinations-step, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
combinations_wf_int, 
divisors_bound, 
gcd_is_divisor_2, 
div_rem_sum, 
nequal_wf, 
rem_bounds_1, 
add-is-int-iff, 
multiply-is-int-iff, 
or_wf, 
set_wf, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
add-associates, 
minus-one-mul, 
add-commutes, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
zero-add, 
minus-add, 
add-swap, 
add_functionality_wrt_le, 
add-zero, 
two-mul, 
le-add-cancel, 
iseg_product-split, 
gcd_sat_gcd_p, 
gcd_p_wf, 
squash_wf, 
coprime_prod, 
gcd_unique, 
assoced_elim, 
gcd-positive
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
productElimination, 
unionElimination, 
applyEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
callbyvalueReduce, 
addEquality, 
instantiate, 
cumulativity, 
equalityElimination, 
baseClosed, 
impliesFunctionality, 
imageElimination, 
remainderEquality, 
imageMemberEquality, 
inlEquality, 
productEquality, 
divideEquality, 
addLevel, 
multiplyEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
minusEquality, 
inrEquality, 
setEquality, 
universeEquality, 
isect_memberFormation
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}\msupplus{}].  \mforall{}[j:\mBbbZ{}].
    (divisor-test(n;i;j)  \mmember{}  \{n1:\mBbbZ{}|  n1  <  n  \mwedge{}  (2  \mleq{}  n1)  \mwedge{}  (n1  |  n)\}    \mvee{}  (gcd(n;iseg\_product(i;j))  =  1))  sup\000Cposing 
          ((i  \mleq{}  j)  and 
          j  <  n)
Date html generated:
2018_05_21-PM-08_15_08
Last ObjectModification:
2017_07_26-PM-05_49_42
Theory : general
Home
Index