Nuprl Lemma : divisor-test_wf

[n:ℕ]. ∀[i:ℕ+]. ∀[j:ℤ].
  (divisor-test(n;i;j) ∈ {n1:ℤn1 < n ∧ (2 ≤ n1) ∧ (n1 n)}  ∨ (gcd(n;iseg_product(i;j)) 1 ∈ ℤ)) supposing ((i ≤ j) \000Cand j < n)


Proof




Definitions occuring in Statement :  divisor-test: divisor-test(n;i;j) iseg_product: iseg_product(i;j) divides: a gcd: gcd(a;b) nat_plus: + nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} nat_plus: + int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) divisor-test: divisor-test(n;i;j) has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b gcd: gcd(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q squash: T nequal: a ≠ b ∈  true: True exposed-bfalse: exposed-bfalse cand: c∧ B iseg_product: iseg_product(i;j) int_nzero: -o subtract: m coprime: CoPrime(a,b)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf subtract_wf nat_plus_wf nat_wf int_seg_wf int_seg_properties decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma value-type-has-value set-value-type int-value-type iseg_product_rem_wf less_than_transitivity1 less_than_transitivity2 le_weakening2 nat_plus_properties decidable__lt itermAdd_wf int_term_value_add_lemma lelt_wf subtype_base_sq int_subtype_base iseg_product_wf better-gcd-gcd eq_int_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_eq_int iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot gcd_wf equal_wf iseg_product_rem_property iff_weakening_equal rem_rem_to_rem gcd_com lt_int_wf assert_of_lt_int le_int_wf assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int gcd_is_divisor_1 divides_wf equal-wf-base true_wf set_subtype_base combinations-step itermMultiply_wf int_term_value_mul_lemma combinations_wf_int divisors_bound gcd_is_divisor_2 div_rem_sum nequal_wf rem_bounds_1 add-is-int-iff multiply-is-int-iff or_wf set_wf not-lt-2 less-iff-le condition-implies-le add-associates minus-one-mul add-commutes minus-one-mul-top add-mul-special zero-mul zero-add minus-add add-swap add_functionality_wrt_le add-zero two-mul le-add-cancel iseg_product-split gcd_sat_gcd_p gcd_p_wf squash_wf coprime_prod gcd_unique assoced_elim gcd-positive
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache productElimination unionElimination applyEquality applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality callbyvalueReduce addEquality instantiate cumulativity equalityElimination baseClosed impliesFunctionality imageElimination remainderEquality imageMemberEquality inlEquality productEquality divideEquality addLevel multiplyEquality pointwiseFunctionality promote_hyp baseApply closedConclusion minusEquality inrEquality setEquality universeEquality isect_memberFormation

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}\msupplus{}].  \mforall{}[j:\mBbbZ{}].
    (divisor-test(n;i;j)  \mmember{}  \{n1:\mBbbZ{}|  n1  <  n  \mwedge{}  (2  \mleq{}  n1)  \mwedge{}  (n1  |  n)\}    \mvee{}  (gcd(n;iseg\_product(i;j))  =  1))  sup\000Cposing 
          ((i  \mleq{}  j)  and 
          j  <  n)



Date html generated: 2018_05_21-PM-08_15_08
Last ObjectModification: 2017_07_26-PM-05_49_42

Theory : general


Home Index