Nuprl Lemma : infinitesmal-zero
∀[x:ℝ]. uiff(x = r0;∀[k:ℕ+]. (|x| ≤ (r1/r(k))))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nat: ℕ
, 
true: True
, 
absval: |i|
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
squash: ↓T
, 
rdiv: (x/y)
, 
real: ℝ
, 
rsub: x - y
, 
reg-seq-add: reg-seq-add(x;y)
, 
nequal: a ≠ b ∈ T 
, 
rminus: -(x)
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
rabs: |x|
, 
int_upper: {i...}
, 
rnonneg2: rnonneg2(x)
, 
int-to-real: r(n)
, 
int_nzero: ℤ-o
, 
sq_type: SQType(T)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
bdd-diff: bdd-diff(f;g)
, 
ge: i ≥ j 
, 
regular-int-seq: k-regular-seq(f)
, 
sq_stable: SqStable(P)
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
rabs_wf, 
nat_plus_wf, 
req_wf, 
req_witness, 
uall_wf, 
rleq_wf, 
real_wf, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-T-base, 
rmul_preserves_rleq, 
rmul_wf, 
absval_wf, 
nat_wf, 
rinv_wf2, 
rleq-int, 
decidable__le, 
intformle_wf, 
itermMultiply_wf, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
rleq_functionality, 
rabs_functionality, 
req_weakening, 
req_transitivity, 
real_term_polynomial, 
itermSubtract_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
squash_wf, 
true_wf, 
rabs-int, 
rmul-int, 
rmul-rinv, 
rmul_comm, 
rmul-rdiv-cancel2, 
uiff_transitivity, 
rmul_preserves_rleq2, 
radd-bdd-diff, 
rnonneg2_functionality, 
rminus_wf, 
radd_wf, 
rnonneg-iff, 
rmul-bdd-diff-reg-seq-mul, 
rminus_functionality_wrt_bdd-diff, 
bdd-diff_weakening, 
reg-seq-add_functionality_wrt_bdd-diff, 
reg-seq-mul_wf, 
int_subtype_base, 
equal-wf-base, 
reg-seq-add_wf, 
less_than_wf, 
less_than_transitivity1, 
subtract_wf, 
all_wf, 
int_upper_wf, 
le_wf, 
int_term_value_minus_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
itermMinus_wf, 
itermAdd_wf, 
nequal_wf, 
div-cancel, 
decidable__equal_int, 
int_upper_properties, 
subtype_base_sq, 
add-zero, 
zero-mul, 
mul-commutes, 
mul-associates, 
minus-one-mul, 
false_wf, 
req-iff-bdd-diff, 
imax_ub, 
imax_wf, 
iff_weakening_equal, 
absval_mul, 
absval_nat_plus, 
mul_cancel_in_le, 
add-mul-special, 
add-commutes, 
add-swap, 
int-triangle-inequality, 
le_weakening, 
le_functionality, 
add_functionality_wrt_le, 
sq_stable__le, 
add_functionality_wrt_eq, 
nat_plus_subtype_nat, 
absval_pos, 
equal_wf, 
absval-non-neg, 
set_subtype_base, 
mul-swap, 
mul-distributes, 
multiply-is-int-iff, 
add-is-int-iff, 
minus-one-mul-top, 
int_upper_subtype_nat, 
mul_preserves_le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
applyEquality, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
independent_isectElimination, 
inrFormation, 
independent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
baseClosed, 
multiplyEquality, 
imageElimination, 
imageMemberEquality, 
addEquality, 
closedConclusion, 
baseApply, 
divideEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
cumulativity, 
instantiate, 
inlFormation, 
universeEquality, 
functionExtensionality, 
promote_hyp, 
pointwiseFunctionality
Latex:
\mforall{}[x:\mBbbR{}].  uiff(x  =  r0;\mforall{}[k:\mBbbN{}\msupplus{}].  (|x|  \mleq{}  (r1/r(k))))
Date html generated:
2017_10_03-AM-08_52_04
Last ObjectModification:
2017_07_28-AM-07_34_57
Theory : reals
Home
Index