Nuprl Lemma : infinitesmal-zero

[x:ℝ]. uiff(x r0;∀[k:ℕ+]. (|x| ≤ (r1/r(k))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rabs: |x| req: y int-to-real: r(n) real: nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) nat: true: True absval: |i| itermConstant: "const" req_int_terms: t1 ≡ t2 squash: T rdiv: (x/y) real: rsub: y reg-seq-add: reg-seq-add(x;y) nequal: a ≠ b ∈  rminus: -(x) reg-seq-mul: reg-seq-mul(x;y) rabs: |x| int_upper: {i...} rnonneg2: rnonneg2(x) int-to-real: r(n) int_nzero: -o sq_type: SQType(T) subtract: m less_than': less_than'(a;b) bdd-diff: bdd-diff(f;g) ge: i ≥  regular-int-seq: k-regular-seq(f) sq_stable: SqStable(P)
Lemmas referenced :  less_than'_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rabs_wf nat_plus_wf req_wf req_witness uall_wf rleq_wf real_wf rneq-int intformeq_wf int_formula_prop_eq_lemma equal-wf-T-base rmul_preserves_rleq rmul_wf absval_wf nat_wf rinv_wf2 rleq-int decidable__le intformle_wf itermMultiply_wf int_formula_prop_le_lemma int_term_value_mul_lemma rleq_functionality rabs_functionality req_weakening req_transitivity real_term_polynomial itermSubtract_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 squash_wf true_wf rabs-int rmul-int rmul-rinv rmul_comm rmul-rdiv-cancel2 uiff_transitivity rmul_preserves_rleq2 radd-bdd-diff rnonneg2_functionality rminus_wf radd_wf rnonneg-iff rmul-bdd-diff-reg-seq-mul rminus_functionality_wrt_bdd-diff bdd-diff_weakening reg-seq-add_functionality_wrt_bdd-diff reg-seq-mul_wf int_subtype_base equal-wf-base reg-seq-add_wf less_than_wf less_than_transitivity1 subtract_wf all_wf int_upper_wf le_wf int_term_value_minus_lemma int_term_value_add_lemma int_term_value_subtract_lemma itermMinus_wf itermAdd_wf nequal_wf div-cancel decidable__equal_int int_upper_properties subtype_base_sq add-zero zero-mul mul-commutes mul-associates minus-one-mul false_wf req-iff-bdd-diff imax_ub imax_wf iff_weakening_equal absval_mul absval_nat_plus mul_cancel_in_le add-mul-special add-commutes add-swap int-triangle-inequality le_weakening le_functionality add_functionality_wrt_le sq_stable__le add_functionality_wrt_eq nat_plus_subtype_nat absval_pos equal_wf absval-non-neg set_subtype_base mul-swap mul-distributes multiply-is-int-iff add-is-int-iff minus-one-mul-top int_upper_subtype_nat mul_preserves_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache extract_by_obid isectElimination applyEquality natural_numberEquality hypothesis setElimination rename independent_isectElimination inrFormation independent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll minusEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation baseClosed multiplyEquality imageElimination imageMemberEquality addEquality closedConclusion baseApply divideEquality dependent_set_memberEquality hyp_replacement cumulativity instantiate inlFormation universeEquality functionExtensionality promote_hyp pointwiseFunctionality

Latex:
\mforall{}[x:\mBbbR{}].  uiff(x  =  r0;\mforall{}[k:\mBbbN{}\msupplus{}].  (|x|  \mleq{}  (r1/r(k))))



Date html generated: 2017_10_03-AM-08_52_04
Last ObjectModification: 2017_07_28-AM-07_34_57

Theory : reals


Home Index