Nuprl Lemma : det-kI+J

[r:CRng]. ∀[n:ℕ]. ∀[a:|r|].  (|a*I J| if (n =z 0) then else (a +r int-to-ring(r;n)) (a ↑(n 1)) fi  ∈ |r|)


Proof




Definitions occuring in Statement :  matrix-scalar-mul: k*M matrix-det: |M| J-matrix: J identity-matrix: I matrix-plus: N nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] infix_ap: y subtract: m natural_number: $n equal: t ∈ T int-to-ring: int-to-ring(r;n) rng_nexp: e ↑n crng: CRng rng_one: 1 rng_times: * rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt crng: CRng rng: Rng squash: T nequal: a ≠ b ∈  subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) bfalse: ff decidable: Dec(P) or: P ∨ Q infix_ap: y lt_int: i <j int-to-ring: int-to-ring(r;n) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] matrix-plus: N matrix-scalar-mul: k*M identity-matrix: I J-matrix: J less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} assert: b bnot: ¬bb uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 so_apply: x[s] so_lambda: λ2x.t[x] cand: c∧ B ringeq_int_terms: t1 ≡ t2 less_than: a < b matrix-minor: matrix-minor(i;j;m) mx: matrix(M[x; y]) matrix-ap: M[i,j] matrix: Matrix(n;m;r) diagonal-matrix: diagonal-matrix(r;x.F[x]) nat_plus: + nat_op: x(op;id) e mon_nat_op: n ⋅ e rng_nexp: e ↑n ycomb: Y itop: Π(op,id) lb ≤ i < ub. E[i] mon_itop: Π lb ≤ i < ub. E[i] rng_prod: rng_prod
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than matrix-det-dim0 rng_car_wf subtract-1-ge-0 subtype_base_sq bool_wf bool_subtype_base equal_wf squash_wf true_wf istype-universe eq_int_eq_false intformeq_wf int_formula_prop_eq_lemma int_subtype_base bfalse_wf subtype_rel_self iff_weakening_equal istype-nat crng_wf decidable__equal_int rng_nat_op_one rng_nexp_zero rng_nat_op_wf rng_one_wf matrix_ap_mx_lemma subtract_wf rng_nexp_wf int-to-ring_wf rng_plus_wf rng_times_wf infix_ap_wf J-matrix_wf identity-matrix_wf le_wf false_wf matrix-scalar-mul_wf matrix-plus_wf matrix-det-dim1 rng_times_over_plus rng_times_one rng_plus_comm lelt_wf decidable__lt int_term_value_subtract_lemma itermSubtract_wf int_seg_wf matrix-ap_wf rng_zero_wf mx_wf int_formula_prop_not_lemma intformnot_wf decidable__le det-add-row neg_assert_of_eq_int assert-bnot bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert eq_int_wf rng_sig_wf rng_wf nat_wf matrix_wf matrix-det_wf equal-wf-base int_seg_properties rng_times_zero rng_plus_zero expand-det-by-row matrix-minor_wf rng_minus_wf isEven_wf rng_sum_unroll_hi ringeq-iff-rsub-is-0 itermMinus_wf itermMultiply_wf itermAdd_wf rng_sum_is_0 ring_polynomial_null ring_term_value_add_lemma ring_term_value_mul_lemma ring_term_value_const_lemma int-to-ring-zero ring_term_value_var_lemma ring_term_value_minus_lemma assert-isEven btrue_wf two-mul less_than_wf top_wf assert_of_lt_int lt_int_wf det-multiple-row-ops rng_times_over_minus rng_plus_assoc rng_plus_ac_1 rng_plus_inv_assoc det-multiple-col-ops rng_plus_inv rng_minus_zero det-diagonal rng_prod_unroll_hi rng_prod_wf istype-le subtract-add-cancel int-to-ring-add int-to-ring-one rng_nexp_unroll istype-false not-lt-2 not-equal-2 less-iff-le add_functionality_wrt_le add-associates add-zero add-commutes le-add-cancel2 condition-implies-le minus-add add-swap minus-minus minus-one-mul zero-add minus-one-mul-top le-add-cancel int_term_value_add_lemma crng_times_comm crng_times_ac_1 rng_times_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies instantiate cumulativity applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality equalityIsType4 baseApply closedConclusion baseClosed imageMemberEquality because_Cache productElimination unionElimination intEquality voidEquality isect_memberEquality lambdaFormation dependent_set_memberEquality lambdaEquality hyp_replacement dependent_pairFormation int_eqReduceFalseSq promote_hyp int_eqReduceTrueSq equalityElimination functionEquality addEquality multiplyEquality axiomSqEquality isect_memberFormation lessCases functionExtensionality dependent_set_memberEquality_alt applyLambdaEquality minusEquality levelHypothesis equalityUniverse

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[a:|r|].
    (|a*I  +  J|  =  if  (n  =\msubz{}  0)  then  1  else  (a  +r  int-to-ring(r;n))  *  (a  \muparrow{}r  (n  -  1))  fi  )



Date html generated: 2019_10_16-AM-11_28_33
Last ObjectModification: 2018_10_18-PM-11_52_47

Theory : matrices


Home Index