Nuprl Lemma : det-kI+J
∀[r:CRng]. ∀[n:ℕ]. ∀[a:|r|].  (|a*I + J| = if (n =z 0) then 1 else (a +r int-to-ring(r;n)) * (a ↑r (n - 1)) fi  ∈ |r|)
Proof
Definitions occuring in Statement : 
matrix-scalar-mul: k*M
, 
matrix-det: |M|
, 
J-matrix: J
, 
identity-matrix: I
, 
matrix-plus: M + N
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
subtract: n - m
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
int-to-ring: int-to-ring(r;n)
, 
rng_nexp: e ↑r n
, 
crng: CRng
, 
rng_one: 1
, 
rng_times: *
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
crng: CRng
, 
rng: Rng
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
infix_ap: x f y
, 
lt_int: i <z j
, 
int-to-ring: int-to-ring(r;n)
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
matrix-plus: M + N
, 
matrix-scalar-mul: k*M
, 
identity-matrix: I
, 
J-matrix: J
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
bnot: ¬bb
, 
uiff: uiff(P;Q)
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
ringeq_int_terms: t1 ≡ t2
, 
less_than: a < b
, 
matrix-minor: matrix-minor(i;j;m)
, 
mx: matrix(M[x; y])
, 
matrix-ap: M[i,j]
, 
matrix: Matrix(n;m;r)
, 
diagonal-matrix: diagonal-matrix(r;x.F[x])
, 
nat_plus: ℕ+
, 
nat_op: n x(op;id) e
, 
mon_nat_op: n ⋅ e
, 
rng_nexp: e ↑r n
, 
ycomb: Y
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
mon_itop: Π lb ≤ i < ub. E[i]
, 
rng_prod: rng_prod
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
matrix-det-dim0, 
rng_car_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
eq_int_eq_false, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_subtype_base, 
bfalse_wf, 
subtype_rel_self, 
iff_weakening_equal, 
istype-nat, 
crng_wf, 
decidable__equal_int, 
rng_nat_op_one, 
rng_nexp_zero, 
rng_nat_op_wf, 
rng_one_wf, 
matrix_ap_mx_lemma, 
subtract_wf, 
rng_nexp_wf, 
int-to-ring_wf, 
rng_plus_wf, 
rng_times_wf, 
infix_ap_wf, 
J-matrix_wf, 
identity-matrix_wf, 
le_wf, 
false_wf, 
matrix-scalar-mul_wf, 
matrix-plus_wf, 
matrix-det-dim1, 
rng_times_over_plus, 
rng_times_one, 
rng_plus_comm, 
lelt_wf, 
decidable__lt, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
int_seg_wf, 
matrix-ap_wf, 
rng_zero_wf, 
mx_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__le, 
det-add-row, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
rng_sig_wf, 
rng_wf, 
nat_wf, 
matrix_wf, 
matrix-det_wf, 
equal-wf-base, 
int_seg_properties, 
rng_times_zero, 
rng_plus_zero, 
expand-det-by-row, 
matrix-minor_wf, 
rng_minus_wf, 
isEven_wf, 
rng_sum_unroll_hi, 
ringeq-iff-rsub-is-0, 
itermMinus_wf, 
itermMultiply_wf, 
itermAdd_wf, 
rng_sum_is_0, 
ring_polynomial_null, 
ring_term_value_add_lemma, 
ring_term_value_mul_lemma, 
ring_term_value_const_lemma, 
int-to-ring-zero, 
ring_term_value_var_lemma, 
ring_term_value_minus_lemma, 
assert-isEven, 
btrue_wf, 
two-mul, 
less_than_wf, 
top_wf, 
assert_of_lt_int, 
lt_int_wf, 
det-multiple-row-ops, 
rng_times_over_minus, 
rng_plus_assoc, 
rng_plus_ac_1, 
rng_plus_inv_assoc, 
det-multiple-col-ops, 
rng_plus_inv, 
rng_minus_zero, 
det-diagonal, 
rng_prod_unroll_hi, 
rng_prod_wf, 
istype-le, 
subtract-add-cancel, 
int-to-ring-add, 
int-to-ring-one, 
rng_nexp_unroll, 
istype-false, 
not-lt-2, 
not-equal-2, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
add-commutes, 
le-add-cancel2, 
condition-implies-le, 
minus-add, 
add-swap, 
minus-minus, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
le-add-cancel, 
int_term_value_add_lemma, 
crng_times_comm, 
crng_times_ac_1, 
rng_times_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
instantiate, 
cumulativity, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
imageMemberEquality, 
because_Cache, 
productElimination, 
unionElimination, 
intEquality, 
voidEquality, 
isect_memberEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
lambdaEquality, 
hyp_replacement, 
dependent_pairFormation, 
int_eqReduceFalseSq, 
promote_hyp, 
int_eqReduceTrueSq, 
equalityElimination, 
functionEquality, 
addEquality, 
multiplyEquality, 
axiomSqEquality, 
isect_memberFormation, 
lessCases, 
functionExtensionality, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
minusEquality, 
levelHypothesis, 
equalityUniverse
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[a:|r|].
    (|a*I  +  J|  =  if  (n  =\msubz{}  0)  then  1  else  (a  +r  int-to-ring(r;n))  *  (a  \muparrow{}r  (n  -  1))  fi  )
Date html generated:
2019_10_16-AM-11_28_33
Last ObjectModification:
2018_10_18-PM-11_52_47
Theory : matrices
Home
Index