Nuprl Lemma : fl-all-decomp
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[phi:Point(face-lattice(T;eq))]. ∀[i:T].
  (phi = (∀i.phi) ∨ phi ∧ (i=0) ∨ phi ∧ (i=1) ∈ Point(face-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
fl-all: (∀i.phi), 
face-lattice1: (x=1), 
face-lattice0: (x=0), 
face-lattice: face-lattice(T;eq), 
lattice-join: a ∨ b, 
lattice-meet: a ∧ b, 
lattice-point: Point(l), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uimplies: b supposing a, 
so_apply: x[s], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
bdd-distributive-lattice: BoundedDistributiveLattice, 
implies: P ⇒ Q, 
anti_sym: AntiSym(T;x,y.R[x; y]), 
and: P ∧ Q, 
order: Order(T;x,y.R[x; y]), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
top: Top, 
or: P ∨ Q, 
decidable: Dec(P), 
guard: {T}, 
squash: ↓T, 
cand: A c∧ B, 
exists: ∃x:A. B[x], 
uiff: uiff(P;Q), 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
fset-constrained-ac-glb: glb(P;ac1;ac2), 
face-lattice0: (x=0), 
face-lattice: face-lattice(T;eq), 
fset-constrained-image: f"(s) s.t. P, 
false: False, 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
nil: [], 
empty-fset: {}, 
list_ind: list_ind, 
reduce: reduce(f;k;as), 
deq-member: x ∈b L, 
fset-member: a ∈ s, 
f-proper-subset: xs ⊆≠ ys, 
f-subset: xs ⊆ ys, 
face-lattice1: (x=1), 
cal-filter: cal-filter(s;x.P[x]), 
fl-filter: fl-filter(s;x.Q[x]), 
fl-all: (∀i.phi)
Lemmas referenced : 
deq_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
lattice-point_wf, 
face-lattice1_wf, 
face-lattice0_wf, 
lattice-meet_wf, 
fl-all_wf, 
lattice-join_wf, 
bdd-distributive-lattice-subtype-lattice, 
face-lattice_wf, 
lattice-le-order, 
deq-fset_wf, 
fset-member_wf, 
implies-le-face-lattice-join3, 
face-lattice-constraints_wf, 
fset-contains-none_wf, 
fset-all_wf, 
union-deq_wf, 
fset-antichain_wf, 
assert_wf, 
fset_wf, 
fl-point-sq, 
decidable__fset-member, 
f-subset_wf, 
exists_wf, 
squash_wf, 
f-subset_weakening, 
fset-singleton_wf, 
fset-union_wf, 
fset-constrained-image_wf, 
f-union_wf, 
f-proper-subset-dec_wf, 
member-fset-minimals, 
free-dlwc-meet, 
member-f-union, 
empty-fset_wf, 
ifthenelse_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
eqtt_to_assert, 
bool_wf, 
fset-member_witness, 
and_wf, 
or_wf, 
member-fset-union, 
fset-extensionality, 
member-fset-singleton, 
mem_empty_lemma, 
fset-all-iff, 
assert_witness, 
assert-f-proper-subset-dec, 
assert_of_bnot, 
f-proper-subset_wf, 
not_wf, 
iff_transitivity, 
isect_wf, 
bnot_wf, 
iff_weakening_uiff, 
bool_cases, 
f-subset-union, 
f-subset_transitivity, 
assert-fset-antichain, 
assert-deq-fset-member, 
assert_of_band, 
deq-fset-member_wf, 
band_wf, 
member-fset-filter, 
lattice-meet-le, 
lattice-join-le, 
face-lattice-subset-le, 
fl-filter-subset
Rules used in proof : 
independent_isectElimination, 
universeEquality, 
productEquality, 
lambdaEquality, 
instantiate, 
axiomEquality, 
isect_memberEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
sqequalRule, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lambdaFormation, 
unionEquality, 
setEquality, 
rename, 
setElimination, 
voidEquality, 
voidElimination, 
unionElimination, 
inlEquality, 
inlFormation, 
inrFormation, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
dependent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
independent_pairEquality, 
levelHypothesis, 
applyLambdaEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
promote_hyp, 
orFunctionality, 
addLevel, 
imageElimination, 
impliesFunctionality, 
Error :memTop, 
inrEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[phi:Point(face-lattice(T;eq))].  \mforall{}[i:T].
    (phi  =  (\mforall{}i.phi)  \mvee{}  phi  \mwedge{}  (i=0)  \mvee{}  phi  \mwedge{}  (i=1))
Date html generated:
2020_05_20-AM-08_53_05
Last ObjectModification:
2020_02_04-PM-01_48_08
Theory : lattices
Home
Index