Nuprl Lemma : fl-all-decomp

[T:Type]. ∀[eq:EqDecider(T)]. ∀[phi:Point(face-lattice(T;eq))]. ∀[i:T].
  (phi (∀i.phi) ∨ phi ∧ (i=0) ∨ phi ∧ (i=1) ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  fl-all: (∀i.phi) face-lattice1: (x=1) face-lattice0: (x=0) face-lattice: face-lattice(T;eq) lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uimplies: supposing a so_apply: x[s] prop: so_lambda: λ2x.t[x] bdd-distributive-lattice: BoundedDistributiveLattice implies:  Q anti_sym: AntiSym(T;x,y.R[x; y]) and: P ∧ Q order: Order(T;x,y.R[x; y]) subtype_rel: A ⊆B all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] top: Top or: P ∨ Q decidable: Dec(P) guard: {T} squash: T cand: c∧ B exists: x:A. B[x] uiff: uiff(P;Q) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] fset-constrained-ac-glb: glb(P;ac1;ac2) face-lattice0: (x=0) face-lattice: face-lattice(T;eq) fset-constrained-image: f"(s) s.t. P false: False assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 rev_implies:  Q iff: ⇐⇒ Q not: ¬A nil: [] empty-fset: {} list_ind: list_ind reduce: reduce(f;k;as) deq-member: x ∈b L fset-member: a ∈ s f-proper-subset: xs ⊆≠ ys f-subset: xs ⊆ ys face-lattice1: (x=1) cal-filter: cal-filter(s;x.P[x]) fl-filter: fl-filter(s;x.Q[x]) fl-all: (∀i.phi)
Lemmas referenced :  deq_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set lattice-point_wf face-lattice1_wf face-lattice0_wf lattice-meet_wf fl-all_wf lattice-join_wf bdd-distributive-lattice-subtype-lattice face-lattice_wf lattice-le-order deq-fset_wf fset-member_wf implies-le-face-lattice-join3 face-lattice-constraints_wf fset-contains-none_wf fset-all_wf union-deq_wf fset-antichain_wf assert_wf fset_wf fl-point-sq decidable__fset-member f-subset_wf exists_wf squash_wf f-subset_weakening fset-singleton_wf fset-union_wf fset-constrained-image_wf f-union_wf f-proper-subset-dec_wf member-fset-minimals free-dlwc-meet member-f-union empty-fset_wf ifthenelse_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert eqtt_to_assert bool_wf fset-member_witness and_wf or_wf member-fset-union fset-extensionality member-fset-singleton mem_empty_lemma fset-all-iff assert_witness assert-f-proper-subset-dec assert_of_bnot f-proper-subset_wf not_wf iff_transitivity isect_wf bnot_wf iff_weakening_uiff bool_cases f-subset-union f-subset_transitivity assert-fset-antichain assert-deq-fset-member assert_of_band deq-fset-member_wf band_wf member-fset-filter lattice-meet-le lattice-join-le face-lattice-subset-le fl-filter-subset
Rules used in proof :  independent_isectElimination universeEquality productEquality lambdaEquality instantiate axiomEquality isect_memberEquality independent_functionElimination because_Cache productElimination sqequalRule applyEquality hypothesis hypothesisEquality cumulativity isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lambdaFormation unionEquality setEquality rename setElimination voidEquality voidElimination unionElimination inlEquality inlFormation inrFormation baseClosed imageMemberEquality independent_pairFormation dependent_pairFormation equalitySymmetry equalityTransitivity equalityElimination independent_pairEquality levelHypothesis applyLambdaEquality dependent_set_memberEquality hyp_replacement promote_hyp orFunctionality addLevel imageElimination impliesFunctionality Error :memTop,  inrEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[phi:Point(face-lattice(T;eq))].  \mforall{}[i:T].
    (phi  =  (\mforall{}i.phi)  \mvee{}  phi  \mwedge{}  (i=0)  \mvee{}  phi  \mwedge{}  (i=1))



Date html generated: 2020_05_20-AM-08_53_05
Last ObjectModification: 2020_02_04-PM-01_48_08

Theory : lattices


Home Index