Nuprl Lemma : glue-comp_wf

G:j⊢. ∀A:{G ⊢ _}. ∀cA:G +⊢ Compositon(A). ∀psi:{G ⊢ _:𝔽}. ∀T:{G, psi ⊢ _}. ∀cT:G, psi +⊢ Compositon(T).
f:{G, psi ⊢ _:Equiv(T;A)}.
  (comp(Glue [psi ⊢→ (T, f)] A)  ∈ composition-function{j:l,i:l}(G;Glue [psi ⊢→ (T;equiv-fun(f))] A))


Proof




Definitions occuring in Statement :  glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  glue-type: Glue [phi ⊢→ (T;w)] A composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] composition-function: composition-function{j:l,i:l}(Gamma;A) member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a guard: {T} implies:  Q subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) and: P ∧ Q true: True squash: T prop: iff: ⇐⇒ Q rev_implies:  Q csm-ap-term: (t)s interval-0: 0(𝕀) interval-type: 𝕀 csm-comp: F csm-adjoin: (s;u) csm-ap: (s)x compose: g cubical-type: {X ⊢ _} csm-ap-type: (AF)s cubical-fun: (A ⟶ B) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} same-cubical-type: Gamma ⊢ B glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  partial-term-0: u[0] so_lambda: λ2x.t[x] so_apply: x[s] csm-comp-structure: (cA)tau partial-term-1: u[1] let: let composition-structure: Gamma ⊢ Compositon(A) glue-type: Glue [phi ⊢→ (T;w)] A interval-1: 1(𝕀) or: P ∨ Q same-cubical-term: X ⊢ u=v:A cc-fst: p pi1: fst(t) face-term-implies: Gamma ⊢ (phi  psi) bdd-distributive-lattice: BoundedDistributiveLattice cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt face-or: (a ∨ b) face-and: (a ∧ b) cubical-term-at: u(a) pres-c1: pres-c1(G;phi;f;t;t0;cA) pres-c2: pres-c2(G;phi;f;t;t0;cT) cc-snd: q fiber-point: fiber-point(t;c) fiber-path: fiber-path(p) cubical-pair: cubical-pair(u;v) cubical-snd: p.2 pi2: snd(t) cand: c∧ B fiber-member: fiber-member(p) cubical-fst: p.1 respects-equality: respects-equality(S;T)
Lemmas referenced :  glue-type_wf equiv-fun_wf context-subset_wf thin-context-subset csm-glue-type cube-context-adjoin_wf interval-type_wf subset-cubical-type sub_cubical_set_functionality context-subset-is-subset equal_functionality_wrt_subtype_rel2 cubical-type_wf cubical-term-eqcd subset-cubical-term csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval context-adjoin-subset1 thin-context-subset-adjoin csm-ap-type_wf csm-id-adjoin_wf interval-0_wf csm-context-subset-subtype3 csm-id-adjoin_wf-interval-0 constrained-cubical-term-eqcd cube_set_map_wf cubical_set_wf istype-cubical-term cubical-equiv_wf composition-structure_wf cubical_set_cumulativity-i-j cubical-fun_wf context-subset-map subtype_rel_transitivity face-and_wf context-subset-term-subtype face-term-implies-subset face-term-and-implies1 context-iterated-subset equal_wf squash_wf true_wf istype-universe csm-cubical-fun subtype_rel_self iff_weakening_equal csm-comp-type csm-comp-term csm-comp_wf unglue-term_wf2 glue-type-subset context-iterated-subset1 cubical-fun-subset glue-type-constraint csm-context-subset-subtype2 sub_cubical_set_transitivity context-subset-swap sub_cubical_set_functionality2 cubical-app_wf_fun csm-unglue unglue-term_wf cubical-term_wf cubical-type-cumulativity2 partial-term-0_wf subtype_rel_set comp_term_wf csm-comp-structure-composition-function composition-structure-cumulativity context-adjoin-subset4 face-forall_wf context-adjoin-subset2 face-forall-implies face-forall-type-subtype subset-comp-structure csm-comp-structure_wf cube_set_map_cumulativity-i-j composition-structure-subset face-forall-implies-0 cube_set_map_subtype3 sub_cubical_set_self composition-function-subset pres_wf2 cubical-fun-subset-adjoin context-adjoin-subset0 pres-c1_wf composition-function-cumulativity pres-c2_wf partial-term-1_wf interval-1_wf cube_set_map_subtype csm-face-and csm_id_adjoin_fst_term_lemma csm-ap-id-term sub_cubical_set_wf face-term-and-implies2 subset-constrained-cubical-term face-forall-implies-1 case-term_wf2 face-or_wf csm-equiv-fun csm-id-adjoin_wf-interval-1 face-term-or-implies subset-cubical-term2 face-term-implies_wf face-term-implies-and face-term-implies-or face-term-implies-or1 path-type_wf csm-cubical-app csm-cubical-equiv face-term-implies-or2 case-term-equal-right context-iterated-subset0 term-to-path-is-refl term-to-path-subset path-type-subset lattice-point_wf face_lattice_wf bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf lattice-1_wf I_cube_wf fset_wf nat_wf bdd-distributive-lattice-subtype-bdd-lattice iff_weakening_uiff lattice-meet-eq-1 face_lattice-1-join-irreducible iff_transitivity constrained-cubical-term_wf composition-function_wf comp_term-subset case-term-equal-left context-subset-subtype-simple subtype_rel_wf context-subset-subtype-or2 fiber-comp_wf subtype_rel-equal equiv-term_wf fiber-member_wf fiber-path_wf cubical-path-app_wf csm-path-type cc-snd_wf cubical-fiber_wf cubical-fiber-subset fiber-member-fiber-point context-subset-subtype-or face-and-com term-to-path-app-snd partial-term-1-subset csm_id_ap_term_lemma csm-face-or context-adjoin-subset3 csm_id_adjoin_fst_type_lemma csm-case-term cubical-path-ap-id-adjoin2 cubical-path-app-0 case-term-same2 csm-id_wf glue-term_wf cubical-path-app-1 glue-unglue glue-term-subset cubical-term-equal case-term-equality-right csm-constrained-cubical-term respects-equality-context-subset-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt functionExtensionality rename cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache instantiate independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination applyEquality lambdaEquality_alt hyp_replacement universeIsType sqequalRule Error :memTop,  productElimination natural_numberEquality imageElimination universeEquality dependent_functionElimination imageMemberEquality baseClosed setElimination inhabitedIsType independent_pairFormation equalityIstype dependent_set_memberEquality_alt applyLambdaEquality cumulativity inrFormation_alt productEquality isectEquality unionEquality productIsType unionIsType unionElimination inlFormation_alt promote_hyp setEquality

Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}cA:G  +\mvdash{}  Compositon(A).  \mforall{}psi:\{G  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}T:\{G,  psi  \mvdash{}  \_\}.
\mforall{}cT:G,  psi  +\mvdash{}  Compositon(T).  \mforall{}f:\{G,  psi  \mvdash{}  \_:Equiv(T;A)\}.
    (comp(Glue  [psi  \mvdash{}\mrightarrow{}  (T,  f)]  A) 
      \mmember{}  composition-function\{j:l,i:l\}(G;Glue  [psi  \mvdash{}\mrightarrow{}  (T;equiv-fun(f))]  A))



Date html generated: 2020_05_20-PM-06_12_43
Last ObjectModification: 2020_04_25-AM-10_54_50

Theory : cubical!type!theory


Home Index