Nuprl Lemma : poly-approx-property
∀[k:ℕ]. ∀[a:ℕ ⟶ ℝ]. ∀[x:ℝ]. ∀[N:ℕ+].  ((|x| ≤ (r1/r(4))) 
⇒ 1-approx(Σ{(a i) * x^i | 0≤i≤k};N;poly-approx(a;x;k;N)))
Proof
Definitions occuring in Statement : 
poly-approx: poly-approx(a;x;k;N)
, 
ireal-approx: j-approx(x;M;z)
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rnexp: x^k1
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
poly-approx: poly-approx(a;x;k;N)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
has-value: (a)↓
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
real: ℝ
, 
rneq: x ≠ y
, 
guard: {T}
, 
less_than: a < b
, 
squash: ↓T
, 
ireal-approx: j-approx(x;M;z)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
sq_type: SQType(T)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nequal: a ≠ b ∈ T 
, 
rge: x ≥ y
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
int_nzero: ℤ-o
Lemmas referenced : 
poly-approx-aux-property, 
mul_nat_plus, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
value-type-has-value, 
nat_plus_wf, 
set-value-type, 
int-value-type, 
ireal-approx-1, 
ireal-approx_wf, 
le_wf, 
equal_wf, 
rleq_wf, 
rabs_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
less_than'_wf, 
rsub_wf, 
nat_plus_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rsum_wf, 
rmul_wf, 
nat_wf, 
int_seg_subtype_nat, 
rnexp_wf, 
int_seg_wf, 
poly-approx_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
real_wf, 
rsum_functionality, 
int_seg_properties, 
decidable__le, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
req_weakening, 
ireal-approx_functionality, 
poly-approx-aux_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
req-int-fractions, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rleq_functionality, 
rleq_functionality_wrt_implies, 
equal-wf-base, 
radd_wf, 
rleq_weakening_equal, 
r-triangle-inequality2, 
radd_functionality_wrt_rleq, 
rmul_preserves_rleq, 
rleq-int, 
rless_functionality, 
rabs-of-nonneg, 
rinv_wf2, 
rneq_functionality, 
rmul-int, 
rneq-int, 
equal-wf-T-base, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
rmul-one, 
req_functionality, 
rmul_functionality, 
req_transitivity, 
rinv_functionality2, 
req_inversion, 
rinv-of-rmul, 
rmul-rinv, 
rmul-rinv3, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
rabs-rmul, 
mul_bounds_1b, 
int_entire_a, 
rminus_wf, 
itermMinus_wf, 
req-int, 
rsub_functionality, 
radd_functionality, 
rminus_functionality, 
rminus-int, 
radd-int, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
mul-commutes, 
div_rem_sum2, 
subtype_rel_sets, 
nequal_wf, 
int_term_value_minus_lemma, 
int_term_value_subtract_lemma, 
rabs_functionality, 
squash_wf, 
true_wf, 
rabs-int, 
iff_weakening_equal, 
absval_wf, 
rem_bounds_absval_le, 
le_functionality, 
le_weakening, 
absval_pos, 
nat_plus_subtype_nat, 
rleq-int-fractions, 
radd-rdiv, 
rdiv_functionality
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
callbyvalueReduce, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation, 
imageMemberEquality, 
baseClosed, 
independent_pairEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
functionExtensionality, 
multiplyEquality, 
axiomEquality, 
functionEquality, 
applyLambdaEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
divideEquality, 
remainderEquality, 
setEquality, 
imageElimination, 
universeEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[N:\mBbbN{}\msupplus{}].
    ((|x|  \mleq{}  (r1/r(4)))  {}\mRightarrow{}  1-approx(\mSigma{}\{(a  i)  *  x\^{}i  |  0\mleq{}i\mleq{}k\};N;poly-approx(a;x;k;N)))
Date html generated:
2018_05_22-PM-02_01_49
Last ObjectModification:
2017_10_25-PM-05_14_16
Theory : reals
Home
Index