Nuprl Lemma : ip-circle-circle-lemma2

rv:InnerProductSpace. ∀r1,r2:{r:ℝr0 ≤ r} . ∀b:Point.
  ((r0 < ||b||)
   ((r1^2 r2^2) ||b||^2^2 ≤ (r(4) ||b||^2 r1^2))
   (∃u,v:Point
       (((||u|| r1) ∧ (||u b|| r2))
       ∧ ((||v|| r1) ∧ (||v b|| r2))
       ∧ (((r1^2 r2^2) ||b||^2^2 < (r(4) ||b||^2 r1^2))  v))))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rleq: x ≤ y rless: x < y rnexp: x^k1 rsub: y req: y rmul: b radd: b int-to-real: r(n) real: ss-sep: y ss-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] prop: uall: [x:A]. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] rneq: x ≠ y or: P ∨ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) less_than: a < b squash: T true: True exp: i^n primrec: primrec(n;b;c) subtract: m rsub: y let: let cand: c∧ B rv-sub: y rv-minus: -x sq_stable: SqStable(P) nat_plus: +
Lemmas referenced :  ip-circle-circle-lemma1 rv-perp-same-norm rv-norm-positive-iff rleq_wf rnexp_wf false_wf le_wf radd_wf rsub_wf rv-norm_wf real_wf int-to-real_wf req_wf rmul_wf rv-ip_wf rless_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf set_wf radd-preserves-rleq rdiv_wf rless-int equal_wf rminus_wf exp_wf2 req-int rless_transitivity1 rleq_weakening rmul_preserves_rleq squash_wf true_wf nat_wf iff_weakening_equal uiff_transitivity rleq_functionality radd_comm radd_functionality req_weakening radd-rminus-assoc radd-zero-both req_functionality rnexp-int rless_functionality req_transitivity req_inversion rnexp-rdiv rdiv_functionality rmul-rdiv-cancel2 rmul-assoc rmul_functionality rmul_comm rmul-ac rnexp-positive rsqrt_wf all_wf or_wf ss-eq_wf rv-mul_wf rv-add_wf rv-sub_wf ss-eq_weakening ss-sep_wf exists_wf rmul_preserves_rless rmul-zero-both rv-minus_wf rv-0_wf ss-eq_functionality rv-add_functionality rv-mul-linear rv-mul-mul rv-add-assoc ss-eq_transitivity rv-add-swap rv-add-comm rv-mul-add-alt rv-mul-add rv-mul_functionality rminus-as-rmul rmul-minus rmul_over_rminus rminus_functionality rmul-one-both rminus-rminus rmul-distrib2 rmul-identity1 radd-int rv-mul0 rv-0-add rv-sep-iff-norm rv-norm_functionality rabs_wf rmul-is-positive rleq-int rleq_weakening_rless sq_stable__rleq rv-norm-mul rabs-of-nonneg rabs-rmul rmul-int square-rless-implies less_than_wf rnexp0 rnexp2 sq_stable__and sq_stable__req req_witness radd-preserves-rless
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination because_Cache productElimination rename isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation setElimination applyEquality lambdaEquality setEquality productEquality instantiate independent_isectElimination inrFormation equalityTransitivity equalitySymmetry imageMemberEquality baseClosed imageElimination universeEquality functionEquality inlFormation dependent_pairFormation addLevel minusEquality addEquality multiplyEquality promote_hyp isect_memberEquality levelHypothesis

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}r1,r2:\{r:\mBbbR{}|  r0  \mleq{}  r\}  .  \mforall{}b:Point.
    ((r0  <  ||b||)
    {}\mRightarrow{}  ((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2\^{}2  \mleq{}  (r(4)  *  ||b||\^{}2  *  r1\^{}2))
    {}\mRightarrow{}  (\mexists{}u,v:Point
              (((||u||  =  r1)  \mwedge{}  (||u  -  b||  =  r2))
              \mwedge{}  ((||v||  =  r1)  \mwedge{}  (||v  -  b||  =  r2))
              \mwedge{}  (((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2\^{}2  <  (r(4)  *  ||b||\^{}2  *  r1\^{}2))  {}\mRightarrow{}  u  \#  v))))



Date html generated: 2017_10_05-AM-00_09_57
Last ObjectModification: 2017_03_14-PM-02_46_41

Theory : inner!product!spaces


Home Index