Nuprl Lemma : lift-id-faces-wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[alpha:X(I)]. ∀[box:A-open-box(X;(Id_A b);I;alpha;J;x;i)].
  (lift-id-faces(X;A;I;alpha;box) ∈ A-open-box(X;A;I+;iota'(I)(alpha);J;x;i))


Proof




Definitions occuring in Statement :  lift-id-faces: lift-id-faces(X;A;I;alpha;box) cubical-identity: (Id_A b) A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet iota': iota'(I) add-fresh-cname: I+ nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T A-open-box: A-open-box(X;A;I;alpha;J;x;i) and: P ∧ Q lift-id-faces: lift-id-faces(X;A;I;alpha;box) cand: c∧ B all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) prop: not: ¬A implies:  Q false: False so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T so_apply: x[s] coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] A-face: A-face(X;A;I;alpha) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L) pairwise: (∀x,y∈L.  P[x; y]) sq_stable: SqStable(P) A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2) spreadn: spread3 lift-id-face: lift-id-face(X;A;I;alpha;face) cubical-path: cubical-path(X;A;a;b;I;alpha) pi1: fst(t) cubical-type-at: A(a) cubical-identity: (Id_A b) iff: ⇐⇒ Q true: True guard: {T} rev_implies:  Q cubical-type-ap-morph: (u f) pi2: snd(t) I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) I-path: I-path(X;A;a;b;I;alpha) named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w) sq_type: SQType(T) iota': iota'(I) has-value: (a)↓ add-fresh-cname: I+ assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 named-path: named-path(X;A;a;b;I;alpha;z) top: Top deq: EqDecider(T) A-face-name: A-face-name(f) l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x])
Lemmas referenced :  map_wf A-face_wf cubical-identity_wf add-fresh-cname_wf cube-set-restriction_wf iota'_wf lift-id-face_wf nameset_wf subtype_rel_list coordinate_name_wf A-adjacent-compatible_wf l_member_wf istype-void l_subset_wf l_exists_wf equal_wf int_seg_wf A-face-name_wf nameset_subtype subtype-add-fresh-cname l_all_wf2 not_wf subtract_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt istype-le istype-less_than pi1_wf_top subtype_rel_product cubical-type-at_wf list-diff_wf cname_deq_wf cons_wf nil_wf face-map_wf2 top_wf pairwise_wf2 A-open-box_wf I-cube_wf list_wf cubical-term_wf cubical-type_wf cubical-set_wf length-map length_wf select_wf sq_stable__l_member decidable__equal-coordinate_name sq_stable__le A-face-compatible_wf select-map path-eq-equiv path-eq_wf I-path_wf subtype_quotient set-path-name_wf fresh-cname_wf subtype_rel_sets_simple member-list-diff true_wf squash_wf name-morph_wf name-comp_wf subtype_rel_wf list-diff2-sym iff_weakening_equal subtype_rel_self cubical-type-ap-morph_wf list-diff2 cube-set-restriction-comp face-maps-commute cubical-path-same-name I-path-morph_wf named-path-equal-implies fresh-cname-not-member2 subtype_base_sq set_subtype_base le_wf int_subtype_base coordinate_name-value-type set-value-type value-type-has-value set_wf cons_member or_wf member_singleton assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert-deq-member eqtt_to_assert bool_wf deq-member_wf list-diff-cons and_wf iota_wf subtype_rel-equal iota-face-map cubical-type-ap-rename-one-equal fresh-cname-not-member-list-diff istype-universe list-diff-cons-single list_subtype_base rename-one-name_wf iota-two-face-maps name-comp-assoc rename-one-iota cubical-type-ap-morph-comp int_formula_prop_eq_lemma intformeq_wf deq_wf trivial-equal extend-name-morph_wf extended-face-map bfalse_wf bor_wf deq_member_nil_lemma deq_member_cons_lemma l_subset-l_contains cons-l_contains l_contains_weakening l_contains_transitivity map-length equal_functionality_wrt_subtype_rel2 lelt_wf product_subtype_base nameset_subtype_base decidable__equal_int l_subset_right_cons_trivial length-map-sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt productElimination extract_by_obid isectElimination hypothesisEquality hypothesis lambdaEquality_alt universeIsType independent_pairFormation lambdaFormation_alt because_Cache applyEquality independent_isectElimination sqequalRule productIsType functionIsType productEquality imageElimination independent_pairEquality inhabitedIsType setIsType natural_numberEquality dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  voidElimination instantiate cumulativity axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies imageMemberEquality baseClosed equalityIstype lambdaEquality lambdaFormation universeEquality hyp_replacement setEquality applyLambdaEquality promote_hyp intEquality callbyvalueReduce inrFormation inlFormation addLevel dependent_pairFormation equalityElimination dependent_set_memberEquality equalityIsType1 closedConclusion voidEquality isect_memberEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].
\mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[alpha:X(I)].  \mforall{}[box:A-open-box(X;(Id\_A  a  b);I;alpha;J;x;i)].
    (lift-id-faces(X;A;I;alpha;box)  \mmember{}  A-open-box(X;A;I+;iota'(I)(alpha);J;x;i))



Date html generated: 2020_05_21-AM-11_12_29
Last ObjectModification: 2020_01_03-PM-06_02_22

Theory : cubical!sets


Home Index