Nuprl Lemma : lift-id-faces-wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[alpha:X(I)]. ∀[box:A-open-box(X;(Id_A a b);I;alpha;J;x;i)].
  (lift-id-faces(X;A;I;alpha;box) ∈ A-open-box(X;A;I+;iota'(I)(alpha);J;x;i))
Proof
Definitions occuring in Statement : 
lift-id-faces: lift-id-faces(X;A;I;alpha;box)
, 
cubical-identity: (Id_A a b)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type: {X ⊢ _}
, 
cube-set-restriction: f(s)
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
iota': iota'(I)
, 
add-fresh-cname: I+
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
and: P ∧ Q
, 
lift-id-faces: lift-id-faces(X;A;I;alpha;box)
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nameset: nameset(L)
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
so_apply: x[s]
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
A-face: A-face(X;A;I;alpha)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L)
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
sq_stable: SqStable(P)
, 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2)
, 
spreadn: spread3, 
lift-id-face: lift-id-face(X;A;I;alpha;face)
, 
cubical-path: cubical-path(X;A;a;b;I;alpha)
, 
pi1: fst(t)
, 
cubical-type-at: A(a)
, 
cubical-identity: (Id_A a b)
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
cubical-type-ap-morph: (u a f)
, 
pi2: snd(t)
, 
I-path-morph: I-path-morph(X;A;I;K;f;alpha;p)
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w)
, 
sq_type: SQType(T)
, 
iota': iota'(I)
, 
has-value: (a)↓
, 
add-fresh-cname: I+
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
named-path: named-path(X;A;a;b;I;alpha;z)
, 
top: Top
, 
deq: EqDecider(T)
, 
A-face-name: A-face-name(f)
, 
l_exists: (∃x∈L. P[x])
, 
l_all: (∀x∈L.P[x])
Lemmas referenced : 
map_wf, 
A-face_wf, 
cubical-identity_wf, 
add-fresh-cname_wf, 
cube-set-restriction_wf, 
iota'_wf, 
lift-id-face_wf, 
nameset_wf, 
subtype_rel_list, 
coordinate_name_wf, 
A-adjacent-compatible_wf, 
l_member_wf, 
istype-void, 
l_subset_wf, 
l_exists_wf, 
equal_wf, 
int_seg_wf, 
A-face-name_wf, 
nameset_subtype, 
subtype-add-fresh-cname, 
l_all_wf2, 
not_wf, 
subtract_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
istype-le, 
istype-less_than, 
pi1_wf_top, 
subtype_rel_product, 
cubical-type-at_wf, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
face-map_wf2, 
top_wf, 
pairwise_wf2, 
A-open-box_wf, 
I-cube_wf, 
list_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
length-map, 
length_wf, 
select_wf, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
A-face-compatible_wf, 
select-map, 
path-eq-equiv, 
path-eq_wf, 
I-path_wf, 
subtype_quotient, 
set-path-name_wf, 
fresh-cname_wf, 
subtype_rel_sets_simple, 
member-list-diff, 
true_wf, 
squash_wf, 
name-morph_wf, 
name-comp_wf, 
subtype_rel_wf, 
list-diff2-sym, 
iff_weakening_equal, 
subtype_rel_self, 
cubical-type-ap-morph_wf, 
list-diff2, 
cube-set-restriction-comp, 
face-maps-commute, 
cubical-path-same-name, 
I-path-morph_wf, 
named-path-equal-implies, 
fresh-cname-not-member2, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
coordinate_name-value-type, 
set-value-type, 
value-type-has-value, 
set_wf, 
cons_member, 
or_wf, 
member_singleton, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert-deq-member, 
eqtt_to_assert, 
bool_wf, 
deq-member_wf, 
list-diff-cons, 
and_wf, 
iota_wf, 
subtype_rel-equal, 
iota-face-map, 
cubical-type-ap-rename-one-equal, 
fresh-cname-not-member-list-diff, 
istype-universe, 
list-diff-cons-single, 
list_subtype_base, 
rename-one-name_wf, 
iota-two-face-maps, 
name-comp-assoc, 
rename-one-iota, 
cubical-type-ap-morph-comp, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
deq_wf, 
trivial-equal, 
extend-name-morph_wf, 
extended-face-map, 
bfalse_wf, 
bor_wf, 
deq_member_nil_lemma, 
deq_member_cons_lemma, 
l_subset-l_contains, 
cons-l_contains, 
l_contains_weakening, 
l_contains_transitivity, 
map-length, 
equal_functionality_wrt_subtype_rel2, 
lelt_wf, 
product_subtype_base, 
nameset_subtype_base, 
decidable__equal_int, 
l_subset_right_cons_trivial, 
length-map-sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
productElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
universeIsType, 
independent_pairFormation, 
lambdaFormation_alt, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
productIsType, 
functionIsType, 
productEquality, 
imageElimination, 
independent_pairEquality, 
inhabitedIsType, 
setIsType, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
instantiate, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
lambdaEquality, 
lambdaFormation, 
universeEquality, 
hyp_replacement, 
setEquality, 
applyLambdaEquality, 
promote_hyp, 
intEquality, 
callbyvalueReduce, 
inrFormation, 
inlFormation, 
addLevel, 
dependent_pairFormation, 
equalityElimination, 
dependent_set_memberEquality, 
equalityIsType1, 
closedConclusion, 
voidEquality, 
isect_memberEquality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].
\mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[alpha:X(I)].  \mforall{}[box:A-open-box(X;(Id\_A  a  b);I;alpha;J;x;i)].
    (lift-id-faces(X;A;I;alpha;box)  \mmember{}  A-open-box(X;A;I+;iota'(I)(alpha);J;x;i))
Date html generated:
2020_05_21-AM-11_12_29
Last ObjectModification:
2020_01_03-PM-06_02_22
Theory : cubical!sets
Home
Index