Nuprl Lemma : BB-problem-21
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f,g:{f:[a, b] ⟶ℝ| ifun(f;[a, b])} .
  ((∀x:ℝ. ((x ∈ [a, b]) 
⇒ (r0 ≤ g[x])))
  
⇒ (∀e:{e:ℝ| r0 < e} . ∃c:{x:ℝ| x ∈ [a, b]} . (|a_∫-b f[x] * g[x] dx - f[c] * a_∫-b g[x] dx| < e)))
Proof
Definitions occuring in Statement : 
integral: a_∫-b f[x] dx
, 
ifun: ifun(f;I)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
label: ...$L... t
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
real-fun: real-fun(f;a;b)
, 
top: Top
, 
ifun: ifun(f;I)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
true: True
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
isl: isl(x)
, 
rccint: [l, u]
, 
i-finite: i-finite(I)
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
req_int_terms: t1 ≡ t2
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
rsub: x - y
, 
rge: x ≥ y
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
rset-member: x ∈ A
, 
rrange: f[x](x∈I)
, 
sup: sup(A) = b
, 
pi2: snd(t)
, 
right-endpoint: right-endpoint(I)
, 
outl: outl(x)
, 
endpoints: endpoints(I)
, 
pi1: fst(t)
, 
left-endpoint: left-endpoint(I)
, 
r-ap: f(x)
, 
i-member: r ∈ I
, 
subinterval: I ⊆ J 
Lemmas referenced : 
integral-is-Riemann, 
rsub_functionality, 
rabs_functionality, 
rless_functionality, 
exists_wf, 
Riemann-integral_wf, 
iff_weakening_equal, 
eta_conv, 
interval_wf, 
icompact_wf, 
squash_wf, 
integral_wf, 
rmin-rleq-rmax, 
rleq_weakening, 
req_inversion, 
rmax_wf, 
rmin_wf, 
ifun_subtype_3, 
req_wf, 
req_weakening, 
rmul_functionality, 
req_functionality, 
member_rccint_lemma, 
right_endpoint_rccint_lemma, 
left_endpoint_rccint_lemma, 
rmul_wf, 
rsub_wf, 
rabs_wf, 
rccint-icompact, 
ifun_wf, 
rfun_wf, 
rleq_wf, 
rccint_wf, 
i-member_wf, 
all_wf, 
int-to-real_wf, 
rless_wf, 
real_wf, 
set_wf, 
rmax-req, 
sq_stable__rleq, 
rmin-req2, 
right-endpoint_wf, 
left-endpoint_wf, 
equal_wf, 
I-norm_wf, 
subtype_rel_self, 
sq_stable__rless, 
rless-cases, 
I-norm_functionality, 
rleq_transitivity, 
sq_stable__req, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
Riemann-integral-rsub, 
Riemann-integral-rmul-const, 
req-iff-rsub-is-0, 
itermVar_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
Riemann-integral_functionality, 
rabs-of-nonneg, 
rleq_functionality, 
I-norm-non-neg, 
nat_plus_wf, 
less_than'_wf, 
I-norm-bound, 
I-norm-rleq, 
radd-zero-both, 
radd-rminus-assoc, 
radd_functionality, 
radd_comm, 
uiff_transitivity, 
rmul_functionality_wrt_rleq2, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rabs-Riemann-integral, 
rminus_wf, 
radd_wf, 
radd-preserves-rleq, 
rmul-is-positive, 
rless_transitivity1, 
I-norm-positive-implies, 
rabs-rmul, 
rabs-positive-iff, 
rmul-rinv, 
req_transitivity, 
rmul-one, 
rinv_wf2, 
rmul-zero-both, 
rdiv_wf, 
rmul_preserves_rless, 
rless-int, 
range_sup_wf, 
range_sup-property, 
Riemann-integral-rleq, 
icompact-endpoints, 
rcc-subinterval, 
rleq-range_sup, 
rabs-bounds, 
rsub_functionality_wrt_rleq, 
rless_functionality_wrt_implies, 
rless-implies-rless, 
true_wf, 
rleq_weakening_rless, 
rmul_preserves_rleq, 
rmul_preserves_rleq2, 
rmul_comm, 
rdiv_functionality, 
rmul-rinv3, 
rinv-of-rmul, 
Riemann-integral-const, 
radd-zero, 
radd-rminus, 
radd-preserves-rless, 
rabs-rless-iff, 
rmul-rdiv-cancel2, 
rmul-distrib2, 
rmul-identity1, 
rminus-as-rmul, 
radd-int, 
rmul-one-both, 
rminus_functionality, 
real_term_value_minus_lemma, 
real_term_value_add_lemma, 
itermMinus_wf, 
itermAdd_wf, 
radd-preserves-req, 
itermConstant_wf, 
rmul_over_rminus, 
false_wf, 
rleq-int, 
radd-rminus-both, 
radd-ac, 
radd-assoc, 
intermediate-value-theorem, 
function-is-continuous, 
rless_transitivity2, 
rmin-rmax-subinterval, 
subtype_rel_sets, 
rminus-zero, 
rless_irreflexivity, 
zero-rleq-rabs
Rules used in proof : 
existsFunctionality, 
addLevel, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
setEquality, 
productElimination, 
dependent_functionElimination, 
dependent_set_memberEquality, 
applyEquality, 
functionEquality, 
natural_numberEquality, 
lambdaEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
independent_isectElimination, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
productEquality, 
unionElimination, 
intEquality, 
int_eqEquality, 
approximateComputation, 
applyLambdaEquality, 
hyp_replacement, 
axiomEquality, 
minusEquality, 
independent_pairEquality, 
isect_memberFormation, 
inlFormation, 
inrFormation, 
dependent_pairFormation, 
addEquality, 
promote_hyp
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f,g:\{f:[a,  b]  {}\mrightarrow{}\mBbbR{}|  ifun(f;[a,  b])\}  .
    ((\mforall{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  (r0  \mleq{}  g[x])))
    {}\mRightarrow{}  (\mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .  \mexists{}c:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (|a\_\mint{}\msupminus{}b  f[x]  *  g[x]  dx  -  f[c]  *  a\_\mint{}\msupminus{}b  g[x]  dx|  <  e))\000C)
Date html generated:
2017_10_04-PM-10_58_56
Last ObjectModification:
2017_08_02-PM-00_31_40
Theory : reals_2
Home
Index