Nuprl Lemma : implies-isometry-lemma2

rv:InnerProductSpace. ∀f:Point ⟶ Point. ∀r:{r:ℝr0 < r} .
  ((∀x,y:Point.  (x ≡  x ≡ y))
   (∀x,y:Point.  (((||x y|| r) ∨ (||x y|| (r(2) r)))  (||f y|| ||x y||)))
   (∀x,y:Point.  ((||x y|| r)  (∀j:ℕr(j)*y x ≡ r(j)*f x))))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y rless: x < y req: y rmul: b int-to-real: r(n) real: ss-eq: x ≡ y ss-point: Point nat: all: x:A. B[x] implies:  Q or: P ∨ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat: false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} ss-eq: x ≡ y subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) sq_type: SQType(T) less_than: a < b so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) rv-minus: -x rv-sub: y iff: ⇐⇒ Q cand: c∧ B squash: T rsub: y true: True absval: |i| rev_implies:  Q rneq: x ≠ y rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf ss-sep_wf rv-add_wf less_than_transitivity1 less_than_irreflexivity rv-mul_wf int-to-real_wf rv-sub_wf int_seg_wf int_seg_properties inner-product-space_subtype decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma le_wf subtype_base_sq int_subtype_base decidable__lt lelt_wf itermAdd_wf int_term_value_add_lemma nat_wf req_wf rv-norm_wf real_wf rleq_wf rmul_wf rv-ip_wf ss-point_wf all_wf or_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-eq_wf set_wf rless_wf rv-0-add rv-mul0 ss-eq_weakening rv-add_functionality ss-eq_functionality uiff_transitivity rv-0_wf rv-add-0 radd-int rv-mul_functionality rv-mul-1-add rv-add-swap rv-add-assoc rv-mul1 rv-minus_wf radd_wf rv-midpoint-unique req_weakening rsub-int req_inversion rv-sub_functionality rv-norm_functionality req_functionality rsub_wf equal_wf rmul_functionality radd-zero-both radd-rminus-both rmul-distrib2 rmul-identity1 radd-ac rmul-int rminus-radd rmul-distrib radd-assoc rminus-int true_wf squash_wf radd_comm rminus-rminus rmul-one-both rminus_functionality rmul_over_rminus rmul-minus rminus-as-rmul radd_functionality req_transitivity rv-mul-add rv-mul-add-alt ss-eq_transitivity rv-mul-add-1-alt rv-mul-mul rv-mul-linear rminus_wf rabs-int rv-norm-mul uiff_transitivity2 absval_wf rabs_wf rdiv_functionality rless-int rdiv_wf rmul_comm rmul-rdiv-cancel2 rmul_preserves_req rv-mul-cancel rinv_wf2 req-iff-rsub-is-0 itermMultiply_wf rmul-rinv real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma real_term_value_mul_lemma rv-add-cancel-left rv-mul-add-1 rv-add-comm itermMinus_wf ss-eq_inversion real_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation because_Cache applyEquality functionExtensionality productElimination unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality instantiate cumulativity addEquality setEquality productEquality functionEquality minusEquality addLevel baseClosed imageMemberEquality imageElimination multiplyEquality inlFormation inrFormation

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point  {}\mrightarrow{}  Point.  \mforall{}r:\{r:\mBbbR{}|  r0  <  r\}  .
    ((\mforall{}x,y:Point.    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y))
    {}\mRightarrow{}  (\mforall{}x,y:Point.    (((||x  -  y||  =  r)  \mvee{}  (||x  -  y||  =  (r(2)  *  r)))  {}\mRightarrow{}  (||f  x  -  f  y||  =  ||x  -  y||)))
    {}\mRightarrow{}  (\mforall{}x,y:Point.    ((||x  -  y||  =  r)  {}\mRightarrow{}  (\mforall{}j:\mBbbN{}.  f  x  +  r(j)*y  -  x  \mequiv{}  f  x  +  r(j)*f  y  -  f  x))))



Date html generated: 2017_10_04-PM-11_56_14
Last ObjectModification: 2017_07_28-AM-08_54_28

Theory : inner!product!spaces


Home Index