Nuprl Lemma : full-arcsin_wf
∀[a:{a:ℝ| a ∈ [r(-1), r1]} ]. (full-arcsin(a) ∈ {x:ℝ| (x ∈ [-(π/2), π/2]) ∧ (rsin(x) = a)} )
Proof
Definitions occuring in Statement : 
full-arcsin: full-arcsin(a), 
halfpi: π/2, 
rsin: rsin(x), 
rccint: [l, u], 
i-member: r ∈ I, 
req: x = y, 
rminus: -(x), 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
full-arcsin: full-arcsin(a), 
int_nzero: ℤ-o, 
true: True, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}, 
false: False, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
int-rdiv: (a)/k1, 
divide: n ÷ m, 
int-to-real: r(n), 
and: P ∧ Q, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
nat: ℕ, 
le: A ≤ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
req_int_terms: t1 ≡ t2, 
rneq: x ≠ y, 
rsub: x - y, 
radd: a + b, 
accelerate: accelerate(k;f), 
reg-seq-list-add: reg-seq-list-add(L), 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
cons: [a / b], 
rminus: -(x), 
rnexp: x^k1, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
bfalse: ff, 
canon-bnd: canon-bnd(x), 
absval: |i|, 
rdiv: (x/y), 
rmul: a * b, 
rinv: rinv(x), 
mu-ge: mu-ge(f;n), 
lt_int: i <z j, 
btrue: tt, 
imax: imax(a;b), 
reg-seq-inv: reg-seq-inv(x), 
le_int: i ≤z j, 
bnot: ¬bb, 
reg-seq-mul: reg-seq-mul(x;y), 
fastexp: i^n, 
efficient-exp-ext, 
genrec: genrec, 
subtract: n - m, 
nil: [], 
it: ⋅, 
real: ℝ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rge: x ≥ y, 
rgt: x > y, 
sq_stable: SqStable(P), 
pi: π, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermVar: rtermVar(var), 
rat_term_ind: rat_term_ind, 
pi1: fst(t), 
rtermMultiply: left "*" right, 
rtermConstant: "const", 
rtermDivide: num "/" denom, 
pi2: snd(t), 
stable: Stable{P}, 
i-member: r ∈ I, 
rooint: (l, u), 
has-value: (a)↓
Lemmas referenced : 
rless-case_wf, 
int-rdiv_wf, 
subtype_base_sq, 
int_subtype_base, 
istype-int, 
nequal_wf, 
int-to-real_wf, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
rabs_wf, 
member_rccint_lemma, 
real_wf, 
i-member_wf, 
rccint_wf, 
radd-preserves-rleq, 
rsub_wf, 
rmul_wf, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
rnexp_wf, 
istype-le, 
square-rleq-1-iff, 
rabs-rleq-iff, 
rleq_wf, 
squash_wf, 
true_wf, 
rminus-int, 
subtype_rel_self, 
iff_weakening_equal, 
rleq_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
req_inversion, 
rnexp2, 
req_weakening, 
rdiv_wf, 
rless-int, 
rless_wf, 
rsqrt_wf, 
rnexp-rless, 
rleq-int-fractions2, 
nat_plus_properties, 
istype-false, 
square-nonneg, 
rmul_comm, 
image-type_wf, 
less_than'_wf, 
equal-wf-base, 
set_subtype_base, 
less_than_wf, 
rless_functionality, 
int-rdiv-req, 
rsqrt-rnexp-2, 
req_functionality, 
req_transitivity, 
rabs-rmul, 
rabs-of-nonneg, 
rless_functionality_wrt_implies, 
rsub_functionality_wrt_rleq, 
rleq_weakening_equal, 
rleq_weakening_rless, 
square-rless-implies, 
rsqrt_nonneg, 
rless-int-fractions3, 
rleq-int-fractions3, 
arcsine-bounds, 
member_rooint_lemma, 
rless_transitivity1, 
MachinPi4_wf, 
sq_stable__req, 
int-rmul_wf, 
halfpi_wf, 
pi_wf, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermConstant_wf, 
rtermDivide_wf, 
rtermVar_wf, 
rnexp_functionality, 
int-rmul_functionality, 
int-rmul-req, 
rmul_functionality, 
rdiv_functionality, 
arcsine-nonneg, 
member_rcoint_lemma, 
partial-arcsin_wf, 
arcsine_wf, 
i-member_functionality, 
rcoint_wf, 
radd-preserves-rless, 
rminus_wf, 
itermMinus_wf, 
halfpi-positive, 
rocint_wf, 
member_rocint_lemma, 
rless-implies-rless, 
trivial-rsub-rleq, 
rleq-implies-rleq, 
real_term_value_minus_lemma, 
rsub_functionality, 
rless_transitivity2, 
req_wf, 
rsin_wf, 
rsin_functionality, 
stable_req, 
false_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
arcsine-shift, 
rsin-arcsine, 
not-rless, 
rleq_antisymmetry, 
rleq_weakening, 
rsqrt0, 
rsqrt_functionality, 
rooint_wf, 
arcsine0, 
arcsine_functionality, 
rsin-halfpi, 
rabs-strict-ub, 
rless-int-fractions2, 
rless_irreflexivity, 
rless-int-fractions, 
real-has-value, 
nat_wf, 
le_wf, 
absval-non-neg, 
absval-minus, 
mul-minus, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rminus-rminus, 
rsin-rminus, 
rminus_functionality, 
rabs-rless-iff, 
rinv_wf2, 
iff_weakening_uiff, 
efficient-exp-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
setElimination, 
thin, 
rename, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
lambdaFormation_alt, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
equalityIstype, 
baseClosed, 
sqequalBase, 
universeIsType, 
hypothesisEquality, 
closedConclusion, 
because_Cache, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
addEquality, 
applyEquality, 
inhabitedIsType, 
setIsType, 
minusEquality, 
productElimination, 
imageElimination, 
universeEquality, 
int_eqEquality, 
inrFormation_alt, 
dependent_set_memberFormation_alt, 
productEquality, 
baseApply, 
productIsType, 
unionEquality, 
functionEquality, 
functionIsType, 
unionIsType, 
callbyvalueReduce, 
promote_hyp
Latex:
\mforall{}[a:\{a:\mBbbR{}|  a  \mmember{}  [r(-1),  r1]\}  ].  (full-arcsin(a)  \mmember{}  \{x:\mBbbR{}|  (x  \mmember{}  [-(\mpi{}/2),  \mpi{}/2])  \mwedge{}  (rsin(x)  =  a)\}  )
Date html generated:
2019_10_31-AM-06_13_48
Last ObjectModification:
2019_05_21-PM-11_09_40
Theory : reals_2
Home
Index