Nuprl Lemma : logseq-property
∀a:{a:ℝ| r0 < a} . ∀b:{b:ℝ| |b - rlog(a)| ≤ (r1/r(10))} . ∀n:ℕ.  (|logseq(a;b;n) - rlog(a)| ≤ (r1/r(10^3^n)))
Proof
Definitions occuring in Statement : 
logseq: logseq(a;b;n), 
rlog: rlog(x), 
rdiv: (x/y), 
rleq: x ≤ y, 
rless: x < y, 
rabs: |x|, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
exp: i^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
sq_stable: SqStable(P), 
sq_type: SQType(T), 
subtract: n - m, 
primrec: primrec(n;b;c), 
exp: i^n, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
nat_plus: ℕ+, 
logseq: logseq(a;b;n), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
has-value: (a)↓, 
decidable: Dec(P), 
real: ℝ, 
rational-approx: (x within 1/n), 
uiff: uiff(P;Q), 
rfun: I ⟶ℝ, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
rgt: x > y, 
req_int_terms: t1 ≡ t2, 
subtype_rel: A ⊆r B, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermDivide: num "/" denom, 
rat_term_ind: rat_term_ind, 
rtermConstant: "const", 
rtermVar: rtermVar(var), 
pi1: fst(t), 
rtermAdd: left "+" right, 
rtermMultiply: left "*" right, 
pi2: snd(t), 
int_upper: {i...}, 
rdiv: (x/y), 
label: ...$L... t, 
primtailrec: primtailrec(n;i;b;f), 
cand: A c∧ B, 
rless: x < y, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
le_witness_for_triv, 
subtract-1-ge-0, 
istype-nat, 
real_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rlog_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
sq_stable__rleq, 
exp1, 
int_subtype_base, 
less_than_wf, 
set_subtype_base, 
nat_plus_wf, 
subtype_base_sq, 
exp0_lemma, 
primrec0_lemma, 
primrec-unroll, 
bool_wf, 
bool_subtype_base, 
iff_imp_equal_bool, 
lt_int_wf, 
bfalse_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
false_wf, 
iff_weakening_uiff, 
assert_of_lt_int, 
iff_weakening_equal, 
subtract-add-cancel, 
value-type-has-value, 
int-value-type, 
exp-fastexp, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
exp_wf4, 
exp_wf2, 
logseq_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
mul_nat_plus, 
decidable__lt, 
exp_wf_nat_plus, 
rational-approx-property, 
lgc_wf, 
rational-approx_wf, 
sq_stable__rless, 
nat_plus_properties, 
multiply-is-int-iff, 
itermMultiply_wf, 
intformeq_wf, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
log-contraction_wf, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
lgc-req, 
req_weakening, 
mean-value-for-bounded-derivative, 
riiint_wf, 
iproper-riiint, 
i-member_wf, 
rnexp_wf, 
rexp_wf, 
radd_wf, 
req_functionality, 
rnexp_functionality, 
rdiv_functionality, 
rexp_functionality, 
radd_functionality, 
req_wf, 
derivative-log-contraction, 
derivative-log-contraction-bound, 
itermAdd_wf, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening_rless, 
radd_functionality_wrt_rless1, 
rexp-positive, 
rless_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rmul_wf, 
member_riiint_lemma, 
istype-true, 
rleq_functionality_wrt_implies, 
rmul_functionality, 
rabs-difference-symmetry, 
rmul-one-both, 
mul_bounds_1b, 
r-triangle-inequality2, 
radd_functionality_wrt_rleq, 
decidable__equal_int, 
rneq_functionality, 
rmul-int, 
rneq-int, 
assert-rat-term-eq2, 
rtermAdd_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermMultiply_wf, 
rtermVar_wf, 
req_inversion, 
rleq_weakening, 
log-contraction-Taylor, 
exp-positive, 
rmul_preserves_rleq, 
rinv_wf2, 
rleq-int, 
le_weakening2, 
exp-ge-1, 
req_transitivity, 
rmul-rinv, 
real_term_value_mul_lemma, 
rnexp-rleq, 
zero-rleq-rabs, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
exp_mul, 
subtype_rel_self, 
exp_step, 
add-commutes, 
mul-commutes, 
int_term_value_add_lemma, 
multiply_nat_wf, 
rnexp-rdiv, 
rnexp-int, 
rmul_preserves_rleq2, 
rleq-int-fractions2, 
istype-false, 
rinv-mul-as-rdiv, 
rmul_preserves_req, 
rmul-rinv3, 
rleq_transitivity, 
exp-one, 
rmul-is-positive, 
rinv-of-rmul, 
rinv-as-rdiv, 
rleq-int-fractions3, 
radd-int-fractions
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
setIsType, 
closedConclusion, 
inrFormation_alt, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
intEquality, 
cumulativity, 
instantiate, 
callbyvalueReduce, 
unionElimination, 
multiplyEquality, 
equalityIstype, 
applyEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
sqequalBase, 
universeEquality, 
addEquality, 
minusEquality, 
inlFormation_alt, 
productIsType
Latex:
\mforall{}a:\{a:\mBbbR{}|  r0  <  a\}  .  \mforall{}b:\{b:\mBbbR{}|  |b  -  rlog(a)|  \mleq{}  (r1/r(10))\}  .  \mforall{}n:\mBbbN{}.
    (|logseq(a;b;n)  -  rlog(a)|  \mleq{}  (r1/r(10\^{}3\^{}n)))
Date html generated:
2019_10_31-AM-06_09_18
Last ObjectModification:
2019_04_03-PM-02_18_07
Theory : reals_2
Home
Index