Nuprl Lemma : face-forall-decomp

[H:j⊢]. ∀[phi:{H.𝕀 ⊢ _:𝔽}].  H.𝕀 ⊢ (phi ⇐⇒ (((∀ phi))p ∨ ((phi ∧ (q=0)) ∨ (phi ∧ (q=1)))))


Proof




Definitions occuring in Statement :  face-forall: (∀ phi) face-term-iff: Gamma ⊢ (phi ⇐⇒ psi) face-zero: (i=0) face-one: (i=1) face-or: (a ∨ b) face-and: (a ∧ b) face-type: 𝔽 interval-type: 𝕀 cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-term-iff: Gamma ⊢ (phi ⇐⇒ psi) and: P ∧ Q subtype_rel: A ⊆B face-term-implies: Gamma ⊢ (phi  psi) all: x:A. B[x] implies:  Q cube-context-adjoin: X.A interval-presheaf: 𝕀 names: names(I) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: bdd-distributive-lattice: BoundedDistributiveLattice cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cc-adjoin-cube: (v;u) pi2: snd(t) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q DeMorgan-algebra: DeMorganAlgebra nc-p: (i/z) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bnot: ¬bb not: ¬A false: False exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) assert: b nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) face-zero: (i=0) cc-snd: q cubical-term-at: u(a) face-one: (i=1) face-forall: (∀ phi) cc-fst: p csm-ap: (s)x free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) interval-type: 𝕀 ge: i ≥  decidable: Dec(P) cand: c∧ B rev_uimplies: rev_uimplies(P;Q) csm-ap-type: (AF)s respects-equality: respects-equality(S;T)
Lemmas referenced :  face-forall-implies cubical-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf face-type_wf cubical_set_wf cc-fst_wf I_cube_pair_redex_lemma interval-type-at nc-p_wf new-name_wf dM_inc_wf add-name_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf subtype_rel_self lattice-1_wf I_cube_wf fset_wf cubical-term-at-morph cc-adjoin-cube_wf cube-set-restriction_wf nc-s_wf f-subset-add-name face-type-at face-type-ap-morph cube_set_restriction_pair_lemma squash_wf true_wf istype-universe cubical-type-cumulativity2 cubical-type_wf istype-cubical-type-at cube-set-restriction-comp iff_weakening_equal cube-set-restriction-id s-comp-nc-p dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf dM-lift-inc eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert assert_elim bnot_wf bool_wf eq_int_eq_true bfalse_wf btrue_neq_bfalse bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int btrue_wf not_assert_elim full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf interval-type-ap-morph face-or-at face-and-at csm-ap-term-at fl_all_wf dM-to-FL_wf dm-neg_wf names_wf names-deq_wf subtype_rel-equal free-DeMorgan-lattice_wf fl-morph_wf cubical-type-at_wf nat_properties decidable__le intformand_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma istype-le face_lattice-induction sq_stable__all sq_stable__equal lattice-0_wf fl_all-1 lattice-join-1 bdd-distributive-lattice-subtype-bdd-lattice fl0_wf fl1_wf fl-morph-0 face-lattice-0-not-1 iff_transitivity fl-morph-join face_lattice-1-join-irreducible fl_all-join fl-morph-meet lattice-meet-eq-1 fl_all-meet fl-morph-fl0 assert_wf not_wf equal-wf-base set_subtype_base istype-nat int_subtype_base istype-assert istype-void bool_cases iff_weakening_uiff assert_of_bnot fl_all-fl0 neg-dM_inc not-added-name dM-to-FL-opp fl-morph-fl1 fl_all-id dM-to-FL-inc lattice-1-meet face-or_wf csm-ap-term_wf csm-face-type face-forall_wf face-and_wf face-zero_wf cc-snd_wf face-one_wf respects-equality_weakening face-or-eq-1 face-and-eq-1
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation universeIsType instantiate applyEquality sqequalRule because_Cache lambdaFormation_alt dependent_functionElimination Error :memTop,  productElimination rename lambdaEquality_alt setElimination inhabitedIsType equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt intEquality independent_isectElimination natural_numberEquality equalityIstype productEquality cumulativity isectEquality hyp_replacement imageElimination universeEquality imageMemberEquality baseClosed dependent_pairEquality_alt independent_functionElimination unionElimination equalityElimination productIsType applyLambdaEquality voidElimination dependent_pairFormation_alt promote_hyp approximateComputation int_eqEquality functionEquality functionIsType unionEquality unionIsType inlFormation_alt inrFormation_alt sqequalBase

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].    H.\mBbbI{}  \mvdash{}  (phi  \mLeftarrow{}{}\mRightarrow{}  (((\mforall{}  phi))p  \mvee{}  ((phi  \mwedge{}  (q=0))  \mvee{}  (phi  \mwedge{}  (q=1)))))



Date html generated: 2020_05_20-PM-03_03_42
Last ObjectModification: 2020_04_06-AM-10_57_11

Theory : cubical!type!theory


Home Index