Nuprl Lemma : face-forall-decomp
∀[H:j⊢]. ∀[phi:{H.𝕀 ⊢ _:𝔽}].  H.𝕀 ⊢ (phi 
⇐⇒ (((∀ phi))p ∨ ((phi ∧ (q=0)) ∨ (phi ∧ (q=1)))))
Proof
Definitions occuring in Statement : 
face-forall: (∀ phi)
, 
face-term-iff: Gamma ⊢ (phi 
⇐⇒ psi)
, 
face-zero: (i=0)
, 
face-one: (i=1)
, 
face-or: (a ∨ b)
, 
face-and: (a ∧ b)
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
face-term-iff: Gamma ⊢ (phi 
⇐⇒ psi)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cube-context-adjoin: X.A
, 
interval-presheaf: 𝕀
, 
names: names(I)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
cc-adjoin-cube: (v;u)
, 
pi2: snd(t)
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
DeMorgan-algebra: DeMorganAlgebra
, 
nc-p: (i/z)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bnot: ¬bb
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
face-zero: (i=0)
, 
cc-snd: q
, 
cubical-term-at: u(a)
, 
face-one: (i=1)
, 
face-forall: (∀ phi)
, 
cc-fst: p
, 
csm-ap: (s)x
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
interval-type: 𝕀
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
csm-ap-type: (AF)s
, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
face-forall-implies, 
cubical-term_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
face-type_wf, 
cubical_set_wf, 
cc-fst_wf, 
I_cube_pair_redex_lemma, 
interval-type-at, 
nc-p_wf, 
new-name_wf, 
dM_inc_wf, 
add-name_wf, 
trivial-member-add-name1, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
cubical-term-at_wf, 
subtype_rel_self, 
lattice-1_wf, 
I_cube_wf, 
fset_wf, 
cubical-term-at-morph, 
cc-adjoin-cube_wf, 
cube-set-restriction_wf, 
nc-s_wf, 
f-subset-add-name, 
face-type-at, 
face-type-ap-morph, 
cube_set_restriction_pair_lemma, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type-cumulativity2, 
cubical-type_wf, 
istype-cubical-type-at, 
cube-set-restriction-comp, 
iff_weakening_equal, 
cube-set-restriction-id, 
s-comp-nc-p, 
dM_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
dM-lift-inc, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
assert_elim, 
bnot_wf, 
bool_wf, 
eq_int_eq_true, 
bfalse_wf, 
btrue_neq_bfalse, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
btrue_wf, 
not_assert_elim, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
interval-type-ap-morph, 
face-or-at, 
face-and-at, 
csm-ap-term-at, 
fl_all_wf, 
dM-to-FL_wf, 
dm-neg_wf, 
names_wf, 
names-deq_wf, 
subtype_rel-equal, 
free-DeMorgan-lattice_wf, 
fl-morph_wf, 
cubical-type-at_wf, 
nat_properties, 
decidable__le, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
istype-le, 
face_lattice-induction, 
sq_stable__all, 
sq_stable__equal, 
lattice-0_wf, 
fl_all-1, 
lattice-join-1, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fl0_wf, 
fl1_wf, 
fl-morph-0, 
face-lattice-0-not-1, 
iff_transitivity, 
fl-morph-join, 
face_lattice-1-join-irreducible, 
fl_all-join, 
fl-morph-meet, 
lattice-meet-eq-1, 
fl_all-meet, 
fl-morph-fl0, 
assert_wf, 
not_wf, 
equal-wf-base, 
set_subtype_base, 
istype-nat, 
int_subtype_base, 
istype-assert, 
istype-void, 
bool_cases, 
iff_weakening_uiff, 
assert_of_bnot, 
fl_all-fl0, 
neg-dM_inc, 
not-added-name, 
dM-to-FL-opp, 
fl-morph-fl1, 
fl_all-id, 
dM-to-FL-inc, 
lattice-1-meet, 
face-or_wf, 
csm-ap-term_wf, 
csm-face-type, 
face-forall_wf, 
face-and_wf, 
face-zero_wf, 
cc-snd_wf, 
face-one_wf, 
respects-equality_weakening, 
face-or-eq-1, 
face-and-eq-1
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
universeIsType, 
instantiate, 
applyEquality, 
sqequalRule, 
because_Cache, 
lambdaFormation_alt, 
dependent_functionElimination, 
Error :memTop, 
productElimination, 
rename, 
lambdaEquality_alt, 
setElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
intEquality, 
independent_isectElimination, 
natural_numberEquality, 
equalityIstype, 
productEquality, 
cumulativity, 
isectEquality, 
hyp_replacement, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
dependent_pairEquality_alt, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
productIsType, 
applyLambdaEquality, 
voidElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
approximateComputation, 
int_eqEquality, 
functionEquality, 
functionIsType, 
unionEquality, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt, 
sqequalBase
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].    H.\mBbbI{}  \mvdash{}  (phi  \mLeftarrow{}{}\mRightarrow{}  (((\mforall{}  phi))p  \mvee{}  ((phi  \mwedge{}  (q=0))  \mvee{}  (phi  \mwedge{}  (q=1)))))
Date html generated:
2020_05_20-PM-03_03_42
Last ObjectModification:
2020_04_06-AM-10_57_11
Theory : cubical!type!theory
Home
Index