Nuprl Lemma : Long-theorem

[x,y:Atom].
  ∀[a,b:ℤ]. ∀[n,k:ℕ+].
    (Moessner(ℤ-rng;x;y;((a b)*atom(x)+(b)*atom(y));λi.if (i =z 0) then 1
                                                         if (i =z 1) then 1
                                                         else 0
                                                         fi ;k)[bag-rep(n;x)]
    ((a ((k 1) b)) k^(n 1))
    ∈ ℤ
  supposing ¬(x y ∈ Atom)


Proof




Definitions occuring in Statement :  Moessner: Moessner(r;x;y;h;d;k) fps-scalar-mul: (c)*f fps-add: (f+g) fps-atom: atom(x) fps-coeff: f[b] bag-rep: bag-rep(n;x) exp: i^n atom-deq: AtomDeq nat_plus: + ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] not: ¬A lambda: λx.A[x] multiply: m subtract: m add: m natural_number: $n int: atom: Atom equal: t ∈ T int_ring: -rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B integ_dom: IntegDom{i} uimplies: supposing a rng_car: |r| pi1: fst(t) int_ring: -rng crng: CRng rng: Rng not: ¬A implies:  Q false: False nat: all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b ge: i ≥  int_upper: {i...} nat_plus: + decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: true: True eq_int: (i =z j) rng_one: 1 pi2: snd(t) squash: T iff: ⇐⇒ Q rev_implies:  Q istype: istype(T) so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k nequal: a ≠ b ∈  so_apply: x[s] power-series: PowerSeries(X;r) rng_zero: 0 fps-slice: [f]_n fps-coeff: f[b] fps-single: <c> infix_ap: y rng_times: * rng_plus: +r fps-add: (f+g) fps-scalar-mul: (c)*f fps-atom: atom(x) atom-deq: AtomDeq bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) subtract: m fps-product: Π(x∈b).f[x] bag-product: Πx ∈ b. f[x] cand: c∧ B monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) ident: Ident(T;op;id) comm: Comm(T;op) fps-exp: (f)^(n) rng_nexp: e ↑n mon_nat_op: n ⋅ e nat_op: x(op;id) e itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y lt_int: i <j grp_id: e mul_mon_of_rng: r↓xmn fps-rng: fps-rng(r) fps-one: 1 bag-rep: bag-rep(n;x)
Lemmas referenced :  KozenSilva-theorem int_ring_wf fps-add_wf fps-scalar-mul_wf subtract_wf subtype_rel_self rng_car_wf fps-atom_wf atom-deq_wf nat_plus_wf istype-int atom_subtype_base istype-void istype-atom eq_int_wf eqtt_to_assert assert_of_eq_int istype-false istype-le eqff_to_assert int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int upper_subtype_nat nat_properties nequal-le-implies zero-add int_upper_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf upper_subtype_upper istype-nat nat_plus_subtype_nat bag-rep_wf list-subtype-bag exp_wf2 equal_wf squash_wf true_wf istype-universe fps-coeff_wf bag_wf power-series_wf crng_wf iff_weakening_equal upto_wf int_seg_wf equal-wf-T-base fps-mul_wf fps-product_wf fps-exp_wf rng_nat_op_wf int_seg_properties intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma set_subtype_base less_than_wf atom-valueall-type fps-compose_wf fps-slice_wf integ_dom_wf fps-ext nat_wf bag-size_wf int_term_value_mul_lemma itermMultiply_wf decidable__equal_int satisfiable-full-omega-tt bag_size_single_lemma nequal_wf assert-bag-eq single-bag_wf bag-eq_wf fps-compose-add fps-compose-scalar-mul fps-compose-atom le_wf equal-wf-base bag_size_empty_lemma empty-bag_wf neg_assert_of_eq_atom assert_of_eq_atom eq_atom_wf rng_nat_op-int fps-scalar-mul-property fps-add-assoc add-commutes mul-commutes minus-one-mul mul-distributes-right add-associates bag-summation-single-non-zero-no-repeats int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 lelt_wf strong-subtype-self fps-one_wf decidable__lt istype-less_than bag-member_wf fps-mul-comm mul_assoc_fps mul_one_fps no_repeats_upto bag-no-repeats-list false_wf decidable__equal_int_seg bag-member-list member_upto2 valueall-type_wf deq_wf minus-zero add-zero one-mul not_wf fps-mul-coeff-bag-rep-simple bag-size-rep int_seg_subtype_nat cons_bag_empty_lemma primrec1_lemma single-bags-equal rng_nexp-int fps-exp-linear-coeff
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality lambdaEquality_alt setElimination rename hypothesisEquality inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule isect_memberFormation_alt independent_isectElimination atomEquality because_Cache isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType functionIsType equalityIsType4 baseApply closedConclusion baseClosed intEquality natural_numberEquality lambdaFormation_alt unionElimination equalityElimination productElimination dependent_set_memberEquality_alt independent_pairFormation dependent_pairFormation_alt promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination hypothesis_subsumption approximateComputation int_eqEquality equalityIsType1 multiplyEquality addEquality imageElimination universeEquality imageMemberEquality hyp_replacement applyLambdaEquality lambdaEquality lambdaFormation dependent_pairFormation computeAll voidEquality isect_memberEquality dependent_set_memberEquality minusEquality productIsType isect_memberFormation independent_pairEquality inlFormation_alt inrFormation_alt

Latex:
\mforall{}[x,y:Atom].
    \mforall{}[a,b:\mBbbZ{}].  \mforall{}[n,k:\mBbbN{}\msupplus{}].
        (Moessner(\mBbbZ{}-rng;x;y;((a  -  b)*atom(x)+(b)*atom(y));\mlambda{}i.if  (i  =\msubz{}  0)  then  1
                                                                                                                  if  (i  =\msubz{}  1)  then  n  -  1
                                                                                                                  else  0
                                                                                                                  fi  ;k)[bag-rep(n;x)]
        =  ((a  +  ((k  -  1)  *  b))  *  k\^{}(n  -  1))) 
    supposing  \mneg{}(x  =  y)



Date html generated: 2019_10_16-AM-11_37_26
Last ObjectModification: 2018_10_18-PM-11_53_13

Theory : power!series


Home Index