Nuprl Lemma : increasing-sequence-converges
∀x:ℕ ⟶ ℝ
  ((∀n:ℕ. ((x n) < (x (n + 1))))
  ⇒ (∃c:{2...}
       ∃m:ℕ+
        ((∀n:ℕ+. (((x (n + 1)) - x n) ≤ ((r1/r(c)) * ((x n) - x (n - 1)))))
        ∧ ((r(c) * ((x 1) - x 0)/r(c - 1)) ≤ (r1/r(m)))))
  ⇒ x n↓ as n→∞)
Proof
Definitions occuring in Statement : 
converges: x[n]↓ as n→∞, 
rdiv: (x/y), 
rleq: x ≤ y, 
rless: x < y, 
rsub: x - y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
int_upper: {i...}, 
nat_plus: ℕ+, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
nat: ℕ, 
nat_plus: ℕ+, 
guard: {T}, 
int_upper: {i...}, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
subtype_rel: A ⊆r B, 
rneq: x ≠ y, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_apply: x[s], 
le: A ≤ B, 
less_than': less_than'(a;b), 
ge: i ≥ j , 
true: True, 
uiff: uiff(P;Q), 
subtract: n - m, 
squash: ↓T, 
less_than: a < b, 
rge: x ≥ y, 
rev_uimplies: rev_uimplies(P;Q), 
rnonneg: rnonneg(x), 
rleq: x ≤ y, 
sq_type: SQType(T), 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
real: ℝ, 
sq_stable: SqStable(P), 
nequal: a ≠ b ∈ T , 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rdiv: (x/y), 
absval: |i|, 
cand: A c∧ B, 
cauchy: cauchy(n.x[n]), 
converges-to: lim n→∞.x[n] = y, 
rsub: x - y
Lemmas referenced : 
exists_wf, 
int_upper_wf, 
nat_plus_wf, 
all_wf, 
rleq_wf, 
rsub_wf, 
nat_wf, 
nat_plus_properties, 
int_upper_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
nat_plus_subtype_nat, 
rmul_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
decidable__lt, 
rless_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
false_wf, 
nat_properties, 
real_wf, 
primrec-wf-nat-plus, 
le-add-cancel, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
not-lt-2, 
less_than_wf, 
exp-positive, 
exp_wf2, 
iff_weakening_equal, 
exp1, 
rneq_wf, 
true_wf, 
squash_wf, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
add-subtract-cancel, 
add-zero, 
add-associates, 
minus-one-mul-top, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
less-iff-le, 
equal_wf, 
rmul_functionality, 
rmul_comm, 
rmul-assoc, 
req_inversion, 
req_weakening, 
rleq_functionality, 
uiff_transitivity, 
less_than'_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
rleq-int-fractions2, 
rmul_preserves_rleq2, 
exp_step, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
exp_wf_nat_plus, 
rmul-int-fractions, 
req_functionality, 
decidable__equal_int, 
mul_nat_plus, 
req-int-fractions, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
mul_bounds_1b, 
radd-preserves-rless, 
radd_wf, 
rless_functionality, 
real_term_polynomial, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
ge_wf, 
rabs_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
absval_wf, 
imin_wf, 
imin_nat, 
sq_stable__less_than, 
rneq-int, 
int_entire_a, 
equal-wf-base, 
equal-wf-T-base, 
absval-non-neg, 
le-iff-imin, 
absval_unfold, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
itermMinus_wf, 
int_term_value_minus_lemma, 
radd-preserves-rleq, 
rleq_weakening_rless, 
rabs-of-nonneg, 
r-triangle-inequality2, 
minus-minus, 
radd_functionality_wrt_rleq, 
rabs-difference-symmetry, 
radd-int-fractions, 
rleq-int-fractions, 
multiply-is-int-iff, 
multiply_nat_plus, 
rinv_wf2, 
real_term_value_mul_lemma, 
radd_functionality, 
rinv-mul-as-rdiv, 
rmul_preserves_req, 
req_transitivity, 
rmul-rinv3, 
imin_unfold, 
le_int_wf, 
assert_of_le_int, 
absval-diff-symmetry, 
rabs_functionality, 
uiff_transitivity2, 
rabs-int, 
minus-zero, 
rmul_preserves_rleq, 
rmul-nonneg-case1, 
rleq-int, 
add_nat_wf, 
add-is-int-iff, 
rmul-is-positive, 
rdiv_functionality, 
rmul-int, 
rinv-of-rmul, 
rmul-rinv, 
rinv-as-rdiv, 
rinv-exp-converges, 
converges-iff-cauchy, 
add-swap, 
imin_ub, 
radd-zero-both, 
radd_comm, 
rminus-zero, 
rabs-bounds, 
rminus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
because_Cache, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
inrFormation, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
minusEquality, 
axiomEquality, 
independent_pairEquality, 
multiplyEquality, 
isect_memberFormation, 
cumulativity, 
instantiate, 
applyLambdaEquality, 
intWeakElimination, 
inlFormation, 
baseApply, 
closedConclusion, 
equalityElimination, 
lessCases, 
sqequalAxiom, 
promote_hyp, 
pointwiseFunctionality, 
sqequalIntensionalEquality, 
addLevel, 
impliesFunctionality, 
dependent_set_memberFormation
Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}
    ((\mforall{}n:\mBbbN{}.  ((x  n)  <  (x  (n  +  1))))
    {}\mRightarrow{}  (\mexists{}c:\{2...\}
              \mexists{}m:\mBbbN{}\msupplus{}
                ((\mforall{}n:\mBbbN{}\msupplus{}.  (((x  (n  +  1))  -  x  n)  \mleq{}  ((r1/r(c))  *  ((x  n)  -  x  (n  -  1)))))
                \mwedge{}  ((r(c)  *  ((x  1)  -  x  0)/r(c  -  1))  \mleq{}  (r1/r(m)))))
    {}\mRightarrow{}  x  n\mdownarrow{}  as  n\mrightarrow{}\minfty{})
Date html generated:
2017_10_04-PM-10_23_49
Last ObjectModification:
2017_07_28-AM-08_48_41
Theory : reals_2
Home
Index