Nuprl Lemma : Legendre-rpolynomial
∀n:ℕ. ∃a:ℕn + 1 ⟶ ℝ. ((∀x:ℝ. (Legendre(n;x) = (Σi≤n. a_i * x^i))) ∧ ((a n) = (r(doublefact((2 * n) - 1))/r((n)!))))
Proof
Definitions occuring in Statement : 
Legendre: Legendre(n;x), 
rpolynomial: (Σi≤n. a_i * x^i), 
rdiv: (x/y), 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
doublefact: doublefact(n), 
fact: (n)!, 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
multiply: n * m, 
subtract: n - m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
sq_type: SQType(T), 
nat: ℕ, 
subtract: n - m, 
less_than: a < b, 
squash: ↓T, 
cand: A c∧ B, 
less_than': less_than'(a;b), 
ge: i ≥ j , 
rneq: x ≠ y, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True, 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
nat_plus: ℕ+, 
fact: (n)!, 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
Legendre: Legendre(n;x), 
nequal: a ≠ b ∈ T , 
bfalse: ff, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
int_upper: {i...}, 
int_nzero: ℤ-o, 
bnot: ¬bb, 
assert: ↑b, 
doublefact: doublefact(n), 
lt_int: i <z j, 
rev_uimplies: rev_uimplies(P;Q), 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
pointwise-req: x[k] = y[k] for k ∈ [n,m], 
rat_term_to_real: rat_term_to_real(f;t), 
rtermDivide: num "/" denom, 
rat_term_ind: rat_term_ind, 
rtermMultiply: left "*" right, 
rtermVar: rtermVar(var), 
rtermMinus: rtermMinus(num), 
pi1: fst(t), 
rtermSubtract: left "-" right, 
rtermConstant: "const", 
pi2: snd(t)
Lemmas referenced : 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
istype-less_than, 
subtype_rel_self, 
Legendre_0_lemma, 
fact0_redex_lemma, 
int-to-real_wf, 
real_wf, 
req_wf, 
rpolynomial_wf, 
nat_properties, 
rdiv_wf, 
doublefact_wf, 
rless-int, 
rless_wf, 
Legendre_1_lemma, 
ifthenelse_wf, 
eq_int_wf, 
nat_plus_wf, 
less_than_wf, 
fact_wf, 
bool_wf, 
bool_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
eq_int_eq_false, 
bfalse_wf, 
iff_weakening_equal, 
eqtt_to_assert, 
assert_of_eq_int, 
upper_subtype_nat, 
istype-false, 
nequal-le-implies, 
zero-add, 
int-rdiv_wf, 
subtype_rel_sets_simple, 
le_wf, 
nequal_wf, 
int_upper_properties, 
int-rmul_wf, 
subtract-add-cancel, 
itermAdd_wf, 
int_term_value_add_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int, 
lt_int_wf, 
assert_of_lt_int, 
upper_subtype_upper, 
rsub_wf, 
iff_weakening_uiff, 
assert_wf, 
rmul_wf, 
Legendre_wf, 
rneq-int, 
fact-non-zero, 
guard_wf, 
exists_wf, 
all_wf, 
int_seg_subtype_nat, 
primrec-wf2, 
nat_plus_properties, 
istype-nat, 
rnexp_zero_lemma, 
req_weakening, 
rinv_wf2, 
itermMultiply_wf, 
req-int, 
radd_wf, 
rnexp_wf, 
req-iff-rsub-is-0, 
req_functionality, 
rpolynomial_unroll, 
req_transitivity, 
rmul_functionality, 
rinv1, 
rmul-identity1, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
radd_functionality, 
rnexp1, 
real_term_value_add_lemma, 
int-rdiv-req, 
rdiv_functionality, 
rsub_functionality, 
int-rmul-req, 
add-associates, 
add-swap, 
add-commutes, 
subtype_rel_function, 
int_seg_subtype, 
not-le-2, 
condition-implies-le, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
add-zero, 
minus-add, 
minus-minus, 
minus-one-mul-top, 
le-add-cancel-alt, 
le_int_wf, 
assert_of_le_int, 
req_inversion, 
rsub-rdiv, 
uiff_transitivity, 
shift-rpolynomial, 
rmul-rpolynomial, 
rdiv-rpolynomial, 
subtract-rpolynomials, 
rpolynomial_functionality, 
rminus_wf, 
itermMinus_wf, 
assert-rat-term-eq2, 
rtermSubtract_wf, 
rtermDivide_wf, 
rtermMultiply_wf, 
rtermVar_wf, 
rtermConstant_wf, 
rtermMinus_wf, 
rsub-int, 
rminus-int, 
radd-int, 
rminus_functionality, 
real_term_value_minus_lemma, 
rmul_preserves_req, 
rmul-rinv, 
rmul-int, 
mul_bounds_1b, 
int_term_value_mul_lemma, 
fact_unroll, 
rneq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
unionElimination, 
applyEquality, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
hypothesis_subsumption, 
cumulativity, 
intEquality, 
imageElimination, 
functionIsType, 
closedConclusion, 
minusEquality, 
inrFormation_alt, 
imageMemberEquality, 
baseClosed, 
inhabitedIsType, 
universeEquality, 
equalityElimination, 
equalityIstype, 
sqequalBase, 
addEquality, 
promote_hyp, 
multiplyEquality, 
functionEquality, 
productEquality, 
setIsType
Latex:
\mforall{}n:\mBbbN{}
    \mexists{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}
      ((\mforall{}x:\mBbbR{}.  (Legendre(n;x)  =  (\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)))  \mwedge{}  ((a  n)  =  (r(doublefact((2  *  n)  -  1))/r((n)!))))
Date html generated:
2019_10_30-AM-11_33_59
Last ObjectModification:
2019_04_09-PM-05_09_40
Theory : reals_2
Home
Index