Nuprl Lemma : implies-isometry-lemma1
∀rv:InnerProductSpace. ∀f:Point(rv) ⟶ Point(rv). ∀r:{r:ℝ| r0 < r} . ∀N:{2...}.
  ((∀x,y:Point(rv).  (x ≡ y 
⇒ f x ≡ f y))
  
⇒ (∀x,y:Point(rv).  ((||x - y|| = r) 
⇒ (||f x - f y|| ≤ r)))
  
⇒ (∀x,y:Point(rv).  ((||x - y|| = (r(N) * r)) 
⇒ ((r(N) * r) ≤ ||f x - f y||)))
  
⇒ {∀x,y:Point(rv).  (((||x - y|| = r) ∨ (||x - y|| = (r(2) * r))) 
⇒ (||f x - f y|| = ||x - y||))})
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rleq: x ≤ y
, 
rless: x < y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_upper: {i...}
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
int_upper: {i...}
, 
prop: ℙ
, 
and: P ∧ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
top: Top
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
nat: ℕ
, 
rv-sub: x - y
, 
rv-minus: -x
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
rge: x ≥ y
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermMultiply: left "*" right
, 
rat_term_ind: rat_term_ind, 
rtermVar: rtermVar(var)
, 
pi1: fst(t)
, 
rtermDivide: num "/" denom
, 
rtermConstant: "const"
, 
pi2: snd(t)
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtract: n - m
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
real: ℝ
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
Lemmas referenced : 
Error :ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
req_wf, 
rv-norm_wf, 
rv-sub_wf, 
rmul_wf, 
int-to-real_wf, 
rleq_wf, 
Error :ss-eq_wf, 
istype-int_upper, 
real_wf, 
rless_wf, 
rv-mul_wf, 
rdiv_wf, 
rless-int, 
rv-add_wf, 
istype-nat, 
req_weakening, 
nequal_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
istype-int, 
intformeq_wf, 
full-omega-unsat, 
int_upper_properties, 
nat_properties, 
istype-void, 
minus-one-mul-top, 
rmul_preserves_req, 
itermMinus_wf, 
itermMultiply_wf, 
rinv_wf2, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
itermSubtract_wf, 
rv-minus_wf, 
rminus_wf, 
radd_wf, 
uiff_transitivity, 
Error :ss-eq_functionality, 
Error :ss-eq_weakening, 
rv-mul-linear, 
rv-add_functionality, 
rv-add-assoc, 
rv-mul-mul, 
rv-mul-add-1-alt, 
Error :ss-eq_transitivity, 
rv-add-swap, 
rv-mul-1-add, 
rv-mul-add-alt, 
rv-mul-add, 
rv-mul_functionality, 
req_transitivity, 
radd_functionality, 
rmul_functionality, 
rdiv_functionality, 
req_inversion, 
radd-int, 
rinv-mul-as-rdiv, 
rminus_functionality, 
rinv-as-rdiv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
req_functionality, 
int-rinv-cancel, 
rmul-rinv3, 
rmul-rinv, 
int-rinv-cancel2, 
istype-false, 
istype-less_than, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
intformless_wf, 
intformnot_wf, 
decidable__lt, 
rleq-int-fractions2, 
rabs_wf, 
rv-norm_functionality, 
rv-norm-mul, 
rabs-of-nonneg, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening, 
decidable__le, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermDivide_wf, 
rtermVar_wf, 
rtermConstant_wf, 
int_term_value_add_lemma, 
upper_subtype_nat, 
istype-le, 
subtract-1-ge-0, 
le_witness_for_triv, 
ge_wf, 
rv-0_wf, 
rsum-empty, 
rv-mul0, 
rleq_functionality, 
rv-norm0, 
int_term_value_subtract_lemma, 
subtract_wf, 
rv-norm-triangle-inequality, 
int_seg_wf, 
int_seg_properties, 
int_seg_subtype_nat, 
rsum_wf, 
rv-0-add, 
radd_functionality_wrt_rleq, 
neg_assert_of_eq_int, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
assert_of_lt_int, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
lt_int_wf, 
subtract-add-cancel, 
rsum_unroll, 
zero-add, 
add-commutes, 
add-swap, 
add-associates, 
decidable__equal_int, 
int_subtype_base, 
rneq_wf, 
req-iff-not-rneq, 
sq_stable__less_than, 
nat_plus_properties, 
rsum-split-first, 
ifthenelse_wf, 
rsum_functionality_wrt_rleq2, 
rsum-constant2, 
rsub_wf, 
rless_functionality, 
rsub-int, 
radd-preserves-rless, 
rless_functionality_wrt_implies, 
rleq_transitivity, 
rless_irreflexivity, 
rless_transitivity1, 
nequal-le-implies, 
istype-assert, 
not_wf, 
bnot_wf, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
rv-norm-triangle-inequality2, 
general_arith_equation2, 
radd-preserves-rleq, 
rv-mul1, 
rv-mul-cancel, 
rmul-int, 
rv-add-0, 
rv-sub_functionality, 
Error :ss-eq_inversion, 
rleq-int, 
squash_wf, 
true_wf, 
rminus-int, 
uiff_transitivity3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
functionIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
because_Cache, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
setIsType, 
productIsType, 
closedConclusion, 
inrFormation_alt, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
intEquality, 
sqequalBase, 
equalityIstype, 
dependent_pairFormation_alt, 
approximateComputation, 
dependent_set_memberEquality_alt, 
voidElimination, 
isect_memberEquality_alt, 
minusEquality, 
addEquality, 
int_eqEquality, 
unionElimination, 
Error :memTop, 
multiplyEquality, 
functionIsTypeImplies, 
intWeakElimination, 
cumulativity, 
promote_hyp, 
equalityElimination, 
imageElimination, 
unionIsType
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).  \mforall{}r:\{r:\mBbbR{}|  r0  <  r\}  .  \mforall{}N:\{2...\}.
    ((\mforall{}x,y:Point(rv).    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y))
    {}\mRightarrow{}  (\mforall{}x,y:Point(rv).    ((||x  -  y||  =  r)  {}\mRightarrow{}  (||f  x  -  f  y||  \mleq{}  r)))
    {}\mRightarrow{}  (\mforall{}x,y:Point(rv).    ((||x  -  y||  =  (r(N)  *  r))  {}\mRightarrow{}  ((r(N)  *  r)  \mleq{}  ||f  x  -  f  y||)))
    {}\mRightarrow{}  \{\mforall{}x,y:Point(rv).
                (((||x  -  y||  =  r)  \mvee{}  (||x  -  y||  =  (r(2)  *  r)))  {}\mRightarrow{}  (||f  x  -  f  y||  =  ||x  -  y||))\})
Date html generated:
2020_05_20-PM-01_13_08
Last ObjectModification:
2019_12_09-PM-07_26_04
Theory : inner!product!spaces
Home
Index