Nuprl Lemma : implies-isometry-lemma1

rv:InnerProductSpace. ∀f:Point(rv) ⟶ Point(rv). ∀r:{r:ℝr0 < r} . ∀N:{2...}.
  ((∀x,y:Point(rv).  (x ≡  x ≡ y))
   (∀x,y:Point(rv).  ((||x y|| r)  (||f y|| ≤ r)))
   (∀x,y:Point(rv).  ((||x y|| (r(N) r))  ((r(N) r) ≤ ||f y||)))
   {∀x,y:Point(rv).  (((||x y|| r) ∨ (||x y|| (r(2) r)))  (||f y|| ||x y||))})


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rleq: x ≤ y rless: x < y req: y rmul: b int-to-real: r(n) real: int_upper: {i...} guard: {T} all: x:A. B[x] implies:  Q or: P ∨ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a int_upper: {i...} prop: and: P ∧ Q rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  nequal: a ≠ b ∈  int_nzero: -o top: Top rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) nat: rv-sub: y rv-minus: -x rdiv: (x/y) req_int_terms: t1 ≡ t2 le: A ≤ B decidable: Dec(P) nat_plus: + rge: x ≥ y rat_term_to_real: rat_term_to_real(f;t) rtermMultiply: left "*" right rat_term_ind: rat_term_ind rtermVar: rtermVar(var) pi1: fst(t) rtermDivide: num "/" denom rtermConstant: "const" pi2: snd(t) rnonneg: rnonneg(x) rleq: x ≤ y so_apply: x[s] so_lambda: λ2x.t[x] subtract: m lelt: i ≤ j < k int_seg: {i..j-} assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 cand: c∧ B sq_stable: SqStable(P) real: sq_exists: x:A [B[x]] rless: x < y
Lemmas referenced :  Error :ss-point_wf,  real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  req_wf rv-norm_wf rv-sub_wf rmul_wf int-to-real_wf rleq_wf Error :ss-eq_wf,  istype-int_upper real_wf rless_wf rv-mul_wf rdiv_wf rless-int rv-add_wf istype-nat req_weakening nequal_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma istype-int intformeq_wf full-omega-unsat int_upper_properties nat_properties istype-void minus-one-mul-top rmul_preserves_req itermMinus_wf itermMultiply_wf rinv_wf2 itermConstant_wf itermVar_wf itermAdd_wf itermSubtract_wf rv-minus_wf rminus_wf radd_wf uiff_transitivity Error :ss-eq_functionality,  Error :ss-eq_weakening,  rv-mul-linear rv-add_functionality rv-add-assoc rv-mul-mul rv-mul-add-1-alt Error :ss-eq_transitivity,  rv-add-swap rv-mul-1-add rv-mul-add-alt rv-mul-add rv-mul_functionality req_transitivity radd_functionality rmul_functionality rdiv_functionality req_inversion radd-int rinv-mul-as-rdiv rminus_functionality rinv-as-rdiv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_mul_lemma real_term_value_minus_lemma req_functionality int-rinv-cancel rmul-rinv3 rmul-rinv int-rinv-cancel2 istype-false istype-less_than int_formula_prop_less_lemma int_formula_prop_not_lemma intformless_wf intformnot_wf decidable__lt rleq-int-fractions2 rabs_wf rv-norm_functionality rv-norm-mul rabs-of-nonneg rleq_functionality_wrt_implies rleq_weakening_equal rleq_weakening decidable__le intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_mul_lemma int_term_value_var_lemma assert-rat-term-eq2 rtermMultiply_wf rtermDivide_wf rtermVar_wf rtermConstant_wf int_term_value_add_lemma upper_subtype_nat istype-le subtract-1-ge-0 le_witness_for_triv ge_wf rv-0_wf rsum-empty rv-mul0 rleq_functionality rv-norm0 int_term_value_subtract_lemma subtract_wf rv-norm-triangle-inequality int_seg_wf int_seg_properties int_seg_subtype_nat rsum_wf rv-0-add radd_functionality_wrt_rleq neg_assert_of_eq_int assert_of_eq_int eqtt_to_assert eq_int_wf assert_of_lt_int less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert lt_int_wf subtract-add-cancel rsum_unroll zero-add add-commutes add-swap add-associates decidable__equal_int int_subtype_base rneq_wf req-iff-not-rneq sq_stable__less_than nat_plus_properties rsum-split-first ifthenelse_wf rsum_functionality_wrt_rleq2 rsum-constant2 rsub_wf rless_functionality rsub-int radd-preserves-rless rless_functionality_wrt_implies rleq_transitivity rless_irreflexivity rless_transitivity1 nequal-le-implies istype-assert not_wf bnot_wf bool_cases iff_transitivity assert_of_bnot rv-norm-triangle-inequality2 general_arith_equation2 radd-preserves-rleq rv-mul1 rv-mul-cancel rmul-int rv-add-0 rv-sub_functionality Error :ss-eq_inversion,  rleq-int squash_wf true_wf rminus-int uiff_transitivity3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule functionIsType universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination because_Cache lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry natural_numberEquality setIsType productIsType closedConclusion inrFormation_alt dependent_functionElimination productElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed intEquality sqequalBase equalityIstype dependent_pairFormation_alt approximateComputation dependent_set_memberEquality_alt voidElimination isect_memberEquality_alt minusEquality addEquality int_eqEquality unionElimination Error :memTop,  multiplyEquality functionIsTypeImplies intWeakElimination cumulativity promote_hyp equalityElimination imageElimination unionIsType

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).  \mforall{}r:\{r:\mBbbR{}|  r0  <  r\}  .  \mforall{}N:\{2...\}.
    ((\mforall{}x,y:Point(rv).    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y))
    {}\mRightarrow{}  (\mforall{}x,y:Point(rv).    ((||x  -  y||  =  r)  {}\mRightarrow{}  (||f  x  -  f  y||  \mleq{}  r)))
    {}\mRightarrow{}  (\mforall{}x,y:Point(rv).    ((||x  -  y||  =  (r(N)  *  r))  {}\mRightarrow{}  ((r(N)  *  r)  \mleq{}  ||f  x  -  f  y||)))
    {}\mRightarrow{}  \{\mforall{}x,y:Point(rv).
                (((||x  -  y||  =  r)  \mvee{}  (||x  -  y||  =  (r(2)  *  r)))  {}\mRightarrow{}  (||f  x  -  f  y||  =  ||x  -  y||))\})



Date html generated: 2020_05_20-PM-01_13_08
Last ObjectModification: 2019_12_09-PM-07_26_04

Theory : inner!product!spaces


Home Index