Nuprl Lemma : nearby-increasing-partition-avoids

I:Interval
  ((icompact(I) ∧ iproper(I))
   (∀p:partition(I)
        (frs-increasing(p)
         (∀L:ℝ List. ∀e:{e:ℝr0 < e} .
              ∃q:partition(I). (frs-increasing(q) ∧ nearby-partitions(e;p;q) ∧ frs-separated(q;L))))))


Proof




Definitions occuring in Statement :  nearby-partitions: nearby-partitions(e;p;q) partition: partition(I) frs-separated: frs-separated(p;q) frs-increasing: frs-increasing(p) icompact: icompact(I) iproper: iproper(I) interval: Interval rless: x < y int-to-real: r(n) real: list: List all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q partition: partition(I) member: t ∈ T sq_stable: SqStable(P) squash: T uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: uimplies: supposing a so_apply: x[s] l_all: (∀x∈L.P[x]) frs-separated: frs-separated(p;q) not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k int_seg: {i..j-} guard: {T} so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] it: nil: [] select: L[n] nearby-partitions: nearby-partitions(e;p;q) cand: c∧ B exists: x:A. B[x] frs-increasing: frs-increasing(p) uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q subtract: m ge: i ≥  le: A ≤ B less_than: a < b rless: x < y sq_exists: x:{A| B[x]} nat_plus: + subtype_rel: A ⊆B real: true: True sq_type: SQType(T) iff: ⇐⇒ Q partitions: partitions(I;p) cons: [a b] assert: b ifthenelse: if then else fi  btrue: tt less_than': less_than'(a;b) bfalse: ff frs-non-dec: frs-non-dec(L) icompact: icompact(I) bool: 𝔹 unit: Unit bnot: ¬bb last: last(L) iproper: iproper(I) rev_implies:  Q itermConstant: "const" req_int_terms: t1 ≡ t2 rsub: y rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y nat: rneq: x ≠ y rnonneg: rnonneg(x) rleq: x ≤ y
Lemmas referenced :  sq_stable__partitions list_induction real_wf all_wf rless_wf int-to-real_wf frs-increasing_wf partitions_wf exists_wf partition_wf nearby-partitions_wf frs-separated_wf list_wf nil_wf set_wf cons_wf icompact_wf iproper_wf interval_wf int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties base_wf stuck-spread length_of_nil_lemma add-member-int_seg2 length_wf length_of_cons_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma non_neg_length decidable__lt itermAdd_wf int_term_value_add_lemma lelt_wf less_than_wf nat_plus_properties sq_stable__less_than select_wf add-associates add-swap add-commutes zero-add squash_wf le_wf add-subtract-cancel nat_plus_wf le_weakening2 subtype_base_sq int_subtype_base true_wf select_cons_tl iff_weakening_equal frs-increasing-non-dec rleq_wf last_cons list-cases null_nil_lemma product_subtype_list null_cons_lemma false_wf right-endpoint_wf rleq_transitivity left-endpoint_wf null_wf3 subtype_rel_list top_wf bool_wf eqtt_to_assert assert_of_null eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot equal-wf-T-base length_wf_nat nat_wf length-singleton rless-cases radd-preserves-rless rsub_wf radd_wf rless_functionality real_term_polynomial real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 avoid-reals-simple rmin_wf rminus_wf req_transitivity rmin_functionality itermMinus_wf real_term_value_minus_lemma radd_functionality req_weakening rmin_strict_ub sq_stable__rless rless-implies-rless rneq_wf l_member_wf l_all_wf2 rabs_wf rleq_weakening_rless rless_transitivity1 rsub-rmin rleq_functionality rmax_wf rmax_lb radd-zero-both radd_comm rminus-rminus rmul-zero-both radd-int rminus-as-rmul rmul_functionality rmul-distrib2 rmul-identity1 req_inversion radd-ac rminus-radd uiff_transitivity rmul_wf rabs-difference-bound-rleq radd-rminus-assoc radd-rminus-both radd-assoc rless_transitivity2 radd-preserves-rleq sq_stable__rleq rleq_weakening_equal rleq_functionality_wrt_implies rminus_functionality rmin-rleq radd-rmin l_all_nil l_all_cons select-cons-hd last_singleton le-add-cancel add-zero add_functionality_wrt_le minus-one-mul-top minus-one-mul minus-add condition-implies-le not-lt-2 rmul-int rmul-rdiv-cancel2 rmul_preserves_rless rless-int rdiv_wf trivial-rless-radd frs-increasing-cons rmin_ub rmul-rdiv-cancel rmul_comm rmul-distrib less_than'_wf rleq-int rmul_preserves_rleq2 rmul_over_rminus rmul-one-both int_formula_prop_eq_lemma intformeq_wf and_wf last_wf assert_wf add_functionality_wrt_eq decidable__equal_int rmin_lb rneq-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin setElimination rename cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis sqequalRule imageMemberEquality baseClosed imageElimination isectElimination lambdaEquality setEquality natural_numberEquality functionEquality independent_isectElimination productEquality because_Cache computeAll intEquality int_eqEquality voidEquality voidElimination isect_memberEquality independent_pairFormation dependent_set_memberEquality dependent_pairFormation unionElimination addEquality applyEquality hyp_replacement equalitySymmetry equalityTransitivity cumulativity universeEquality instantiate promote_hyp hypothesis_subsumption equalityElimination applyLambdaEquality minusEquality levelHypothesis addLevel multiplyEquality inrFormation axiomEquality independent_pairEquality isect_memberFormation impliesFunctionality inlFormation

Latex:
\mforall{}I:Interval
    ((icompact(I)  \mwedge{}  iproper(I))
    {}\mRightarrow{}  (\mforall{}p:partition(I)
                (frs-increasing(p)
                {}\mRightarrow{}  (\mforall{}L:\mBbbR{}  List.  \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
                            \mexists{}q:partition(I)
                              (frs-increasing(q)  \mwedge{}  nearby-partitions(e;p;q)  \mwedge{}  frs-separated(q;L))))))



Date html generated: 2017_10_03-AM-09_39_57
Last ObjectModification: 2017_07_28-AM-07_55_30

Theory : reals


Home Index