Nuprl Lemma : nearby-increasing-partition-avoids
∀I:Interval
  ((icompact(I) ∧ iproper(I))
  
⇒ (∀p:partition(I)
        (frs-increasing(p)
        
⇒ (∀L:ℝ List. ∀e:{e:ℝ| r0 < e} .
              ∃q:partition(I). (frs-increasing(q) ∧ nearby-partitions(e;p;q) ∧ frs-separated(q;L))))))
Proof
Definitions occuring in Statement : 
nearby-partitions: nearby-partitions(e;p;q)
, 
partition: partition(I)
, 
frs-separated: frs-separated(p;q)
, 
frs-increasing: frs-increasing(p)
, 
icompact: icompact(I)
, 
iproper: iproper(I)
, 
interval: Interval
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
list: T List
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
partition: partition(I)
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
l_all: (∀x∈L.P[x])
, 
frs-separated: frs-separated(p;q)
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
it: ⋅
, 
nil: []
, 
select: L[n]
, 
nearby-partitions: nearby-partitions(e;p;q)
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
frs-increasing: frs-increasing(p)
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtract: n - m
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
less_than: a < b
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
true: True
, 
sq_type: SQType(T)
, 
iff: P 
⇐⇒ Q
, 
partitions: partitions(I;p)
, 
cons: [a / b]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
less_than': less_than'(a;b)
, 
bfalse: ff
, 
frs-non-dec: frs-non-dec(L)
, 
icompact: icompact(I)
, 
bool: 𝔹
, 
unit: Unit
, 
bnot: ¬bb
, 
last: last(L)
, 
iproper: iproper(I)
, 
rev_implies: P 
⇐ Q
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
rsub: x - y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
nat: ℕ
, 
rneq: x ≠ y
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
Lemmas referenced : 
sq_stable__partitions, 
list_induction, 
real_wf, 
all_wf, 
rless_wf, 
int-to-real_wf, 
frs-increasing_wf, 
partitions_wf, 
exists_wf, 
partition_wf, 
nearby-partitions_wf, 
frs-separated_wf, 
list_wf, 
nil_wf, 
set_wf, 
cons_wf, 
icompact_wf, 
iproper_wf, 
interval_wf, 
int_seg_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
add-member-int_seg2, 
length_wf, 
length_of_cons_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
non_neg_length, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
less_than_wf, 
nat_plus_properties, 
sq_stable__less_than, 
select_wf, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
squash_wf, 
le_wf, 
add-subtract-cancel, 
nat_plus_wf, 
le_weakening2, 
subtype_base_sq, 
int_subtype_base, 
true_wf, 
select_cons_tl, 
iff_weakening_equal, 
frs-increasing-non-dec, 
rleq_wf, 
last_cons, 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
false_wf, 
right-endpoint_wf, 
rleq_transitivity, 
left-endpoint_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
length_wf_nat, 
nat_wf, 
length-singleton, 
rless-cases, 
radd-preserves-rless, 
rsub_wf, 
radd_wf, 
rless_functionality, 
real_term_polynomial, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
avoid-reals-simple, 
rmin_wf, 
rminus_wf, 
req_transitivity, 
rmin_functionality, 
itermMinus_wf, 
real_term_value_minus_lemma, 
radd_functionality, 
req_weakening, 
rmin_strict_ub, 
sq_stable__rless, 
rless-implies-rless, 
rneq_wf, 
l_member_wf, 
l_all_wf2, 
rabs_wf, 
rleq_weakening_rless, 
rless_transitivity1, 
rsub-rmin, 
rleq_functionality, 
rmax_wf, 
rmax_lb, 
radd-zero-both, 
radd_comm, 
rminus-rminus, 
rmul-zero-both, 
radd-int, 
rminus-as-rmul, 
rmul_functionality, 
rmul-distrib2, 
rmul-identity1, 
req_inversion, 
radd-ac, 
rminus-radd, 
uiff_transitivity, 
rmul_wf, 
rabs-difference-bound-rleq, 
radd-rminus-assoc, 
radd-rminus-both, 
radd-assoc, 
rless_transitivity2, 
radd-preserves-rleq, 
sq_stable__rleq, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rminus_functionality, 
rmin-rleq, 
radd-rmin, 
l_all_nil, 
l_all_cons, 
select-cons-hd, 
last_singleton, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
minus-one-mul-top, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
rmul-int, 
rmul-rdiv-cancel2, 
rmul_preserves_rless, 
rless-int, 
rdiv_wf, 
trivial-rless-radd, 
frs-increasing-cons, 
rmin_ub, 
rmul-rdiv-cancel, 
rmul_comm, 
rmul-distrib, 
less_than'_wf, 
rleq-int, 
rmul_preserves_rleq2, 
rmul_over_rminus, 
rmul-one-both, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
and_wf, 
last_wf, 
assert_wf, 
add_functionality_wrt_eq, 
decidable__equal_int, 
rmin_lb, 
rneq-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
setElimination, 
rename, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isectElimination, 
lambdaEquality, 
setEquality, 
natural_numberEquality, 
functionEquality, 
independent_isectElimination, 
productEquality, 
because_Cache, 
computeAll, 
intEquality, 
int_eqEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
dependent_pairFormation, 
unionElimination, 
addEquality, 
applyEquality, 
hyp_replacement, 
equalitySymmetry, 
equalityTransitivity, 
cumulativity, 
universeEquality, 
instantiate, 
promote_hyp, 
hypothesis_subsumption, 
equalityElimination, 
applyLambdaEquality, 
minusEquality, 
levelHypothesis, 
addLevel, 
multiplyEquality, 
inrFormation, 
axiomEquality, 
independent_pairEquality, 
isect_memberFormation, 
impliesFunctionality, 
inlFormation
Latex:
\mforall{}I:Interval
    ((icompact(I)  \mwedge{}  iproper(I))
    {}\mRightarrow{}  (\mforall{}p:partition(I)
                (frs-increasing(p)
                {}\mRightarrow{}  (\mforall{}L:\mBbbR{}  List.  \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
                            \mexists{}q:partition(I)
                              (frs-increasing(q)  \mwedge{}  nearby-partitions(e;p;q)  \mwedge{}  frs-separated(q;L))))))
Date html generated:
2017_10_03-AM-09_39_57
Last ObjectModification:
2017_07_28-AM-07_55_30
Theory : reals
Home
Index