Nuprl Lemma : decidable__q-constraints

k:ℕ. ∀A:(ℕ ⟶ ℚ × ℤList.  Dec(∃y:ℚ List [q-constraints(k;A;y)])


Proof




Definitions occuring in Statement :  q-constraints: q-constraints(k;A;y) rationals: list: List nat: decidable: Dec(P) all: x:A. B[x] sq_exists: x:A [B[x]] function: x:A ⟶ B[x] product: x:A × B[x] int:
Definitions unfolded in proof :  subtype_rel: A ⊆B so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] sq_exists: x:A [B[x]] top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} nat: prop: squash: T exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x] guard: {T} sq_type: SQType(T) iff: ⇐⇒ Q cand: c∧ B rev_implies:  Q true: True q-constraints: q-constraints(k;A;y) less_than': less_than'(a;b) bool: 𝔹 ifthenelse: if then else fi  q-rel: q-rel(r;x) sq_stable: SqStable(P) pi1: fst(t) pi2: snd(t) cons: [a b] l_all: (∀x∈L.P[x]) nat_plus: + select: L[n] qsub: s qdiv: (r/s) uiff: uiff(P;Q) evalall: evalall(t) callbyvalueall: callbyvalueall qmul: s bfalse: ff it: unit: Unit btrue: tt eq_int: (i =z j) q-rel-lub: q-rel-lub(r1;r2) rev_uimplies: rev_uimplies(P;Q) band: p ∧b q mapfilter: mapfilter(f;P;L) assert: b qeq: qeq(r;s) qbetween: a ≤ b ≤ c q-between: a < b < c bnot: ¬bb lt_int: i <j qadd: s qpositive: qpositive(r) bor: p ∨bq q_le: q_le(r;s) qadd_grp: <ℚ+> grp_le: b dset_of_mon: g↓set oset_of_ocmon: g↓oset set_le: b infix_ap: y set_blt: a <b b set_lt: a <b grp_lt: a < b qless: r < s
Lemmas referenced :  subtype_rel_self subtype_rel_function natrec_wf istype-nat istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties int_seg_wf q-constraints_wf sq_exists_wf decidable_wf valueall-type-value-type equal_wf set-value-type evalall-reduce list_wf int-valueall-type rationals-value-type function-valueall-type product-valueall-type rationals_wf nat_wf list-valueall-type int_subtype_base subtype_base_sq decidable__equal_int iff_weakening_equal q-linear-base q-rel_wf l_all_wf2 istype-universe true_wf squash_wf l_member_wf top_wf subtype_rel_product pi1_wf_top pi2_wf le_wf set_subtype_base length_wf_nat equal-wf-base decidable__q-rel decidable__l_all-better-extract length_of_nil_lemma nil_wf ifthenelse_wf qless_wf qless_witness qle_wf qle_witness eq_int_wf sq_stable_from_decidable sq_stable__l_all istype-less_than int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_eq_lemma int_term_value_subtract_lemma intformeq_wf itermSubtract_wf subtract_wf evalall-equal member_wf int-subtype-rationals decidable__equal_rationals decidable__not decidable__cand equal-wf-T-base not_wf decidable__l_exists_better-extract l_exists_iff qdiv_wf qmul_wf qsub_wf map_wf product_subtype_list list-cases q-linear_wf cons_wf append_wf int_term_value_add_lemma itermAdd_wf length_of_cons_lemma length-append length_wf select_wf subtype_rel_list select-map map-length q-linear-unroll select_append_back qadd_wf select_append_front q-linear-equal q-linear-times q-linear-sum qmul_comm_qrng qmul_ac_1_qrng qmul_assoc_qrng qmul_over_minus_qrng istype-assert assert-qeq qeq_wf2 assert_wf iff_weakening_uiff qinv_wf sq_stable__equal sq_stable__and assert_of_null null_wf3 length_of_not_nil last_lemma false_wf add-is-int-iff last_wf length_append l_all_iff member_map less_than_wf q-constraint-times q-constraint-sum assert_of_bnot eqff_to_assert iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity bnot_wf bool_wf q-constraint-zero qmul_assoc qmul_com qmul_inv qadd_minus qmul_ident product-map member_filter l_exists_wf q-rel-lub_wf q_less_wf filter_wf5 assert-q_less-eq member_append normalize-constraints-eq normalize-constraints_wf decidable__qless qless_irreflexivity qle_weakening_eq_qorder qless_transitivity_2_qorder qneginv-positive qinv-positive qmul-positive qinv_inv_q qmul_one_qrng qmul-qdiv-cancel2 qmul-qdiv-cancel4 qmul_over_plus_qrng qadd_comm_q assert_of_bor bnot_thru_band assert_of_band bor_wf bfalse_wf btrue_wf band_wf bool_subtype_base bool_cases qle_weakening_lt_qorder int_formula_prop_or_lemma intformor_wf mapfilter_wf q-max-exists null-map member_null member_map_filter q-min-exists length-singleton qle-minus qinverse_q qadd_preserves_qle average-qbetween mon_ident_q qadd_ac_1_q qle_transitivity_qorder qadd_preserves_qless qle_antisymmetry qless_complement_qorder average-q-between qless_transitivity_1_qorder qadd_inv_assoc_q qadd_com qless_trichot_qorder q-constraint-positive q-constraint-negative mon_assoc_q qmul_zero_qrng uiff_transitivity2 qinv_id_q qless-minus
Rules used in proof :  functionExtensionality applyEquality voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination imageElimination productElimination natural_numberEquality applyLambdaEquality hyp_replacement dependent_functionElimination because_Cache rename setElimination equalityIstype dependent_set_memberEquality_alt cutEval equalitySymmetry equalityTransitivity baseClosed imageMemberEquality independent_pairFormation independent_functionElimination universeIsType hypothesisEquality inhabitedIsType functionIsType lambdaEquality_alt sqequalRule independent_isectElimination intEquality hypothesis functionEquality productEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cumulativity instantiate universeEquality productIsType setIsType inrFormation_alt sqequalBase inlFormation_alt dependent_set_memberFormation_alt functionIsTypeImplies axiomEquality isect_memberFormation_alt promote_hyp independent_pairEquality spreadEquality hypothesis_subsumption closedConclusion minusEquality equalityElimination addEquality baseApply pointwiseFunctionality unionIsType unionEquality Error :memTop

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}A:(\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{})  List.    Dec(\mexists{}y:\mBbbQ{}  List  [q-constraints(k;A;y)])



Date html generated: 2020_05_20-AM-09_30_24
Last ObjectModification: 2020_02_01-AM-11_56_25

Theory : rationals


Home Index